AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Co-assembly of FeTPP@Fe3O4 nanoparticles with photo-enhanced catalytic activity for synergistic tumor therapy

Tian Tian1,§Jianshuai Bao1,§Jinghan Wang1Jiefei Wang2Yan Ge1Zengyin Li1Shanqing Gao1Zhongqi You1Xiaoyan Yang1Yong Zhong1( )Feng Bai1 ( )
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China

§ Tian Tian and Jianshuai Bao contributed equally to this work.

Show Author Information

Graphical Abstract

Iron(III) tetraphenylporphyrin (FeTPP) and magnetic (Fe3O4) composite nanoparticles (FeTPP@Fe3O4 NPs) possess magnetic resonance imaging (MRI) functions were prepared through a one-step microemulsion-assisted co-assembly method. The introduction of Fe3O4 nanocrystals (NCs) enhances disorganized the amorphous aggregation of FeTPP monomers, then increases the aggregation-caused quenching (ACQ) of porphyrins, which endowed FeTPP@Fe3O4 NPs high photothermal performance and photo-enhanced the Fenton reaction for amplified chemodynamic therapy (CDT).

Abstract

Chemodynamic therapy (CDT) offers a promising alternative to conventional cancer treatment. However, the limited acidity and H2O2 concentration in tumor microenvironment (TME) severely impair the anticancer effects of CDT. In this study, we report a microemulsion-assisted coassembly method to prepare iron(III) tetraphenylporphyrin (FeTPP) and magnetic (Fe3O4) nanocomposite material (FeTPP@Fe3O4), using photoactive FeTPP and Fe3O4 nanocrystals as building blocks. The self-assembling nature of FeTPP results in disordered aggregation and fluorescence quenching, leading to a high light-to-heat conversion efficiency. Continuously, the photo-thermal effect enhances the catalytic decomposition of hydrogen peroxide (H2O2) in the Fenton reaction on Fe3O4 nanocrystals to generate highly toxic hydroxyl radicals (·OH) to destroy cancer cells. This cascade reaction produces a synergistic therapeutic effect between CDT and photothermal therapy (PTT), which significantly amplifies the therapeutic effect and enhances the treatment outcome of cancer patients. The highly efficient tumor catalytic therapy in vivo results confirmed that this nanomedicine treatment is an excellent biocompatible catalytic nanomedicine therapy achieved through a photo-enhanced Fenton reaction activity approach.

Electronic Supplementary Material

Download File(s)
12274_2022_4548_MOESM1_ESM.pdf (2.2 MB)

References

1

Lin, H.; Chen, Y.; Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 2018, 47, 1938–1958.

2

Chen, X. Y.; Zhang, H. L.; Zhang, M.; Zhao, P. R.; Song, R. X.; Gong, T.; Liu, Y. Y.; He, X. H.; Zhao, K. L.; Bu, W. B. Amorphous Fe-based nanoagents for self-enhanced chemodynamic therapy by re-establishing tumor acidosis. Adv. Funct. Mater. 2020, 30, 1908365.

3

Wang, X. H.; Wang, X. Y.; Jin, S. X.; Muhammad, N.; Guo, Z. J. Stimuli-responsive therapeutic metallodrugs. Chem. Rev. 2019, 119, 1138–1192.

4

Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946–956.

5

Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.

6

Zhang, Y.; Khalique, A.; Du, X. C.; Gao, Z. X.; Wu, J.; Zhang, X. Y.; Zhang, R.; Sun, Z. Y.; Liu, Q. Q.; Xu, Z. L. et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 2021, 33, 2006570.

7

Gong, F.; Chen, M. C.; Yang, N. L.; Dong, Z. L.; Tian, L. L.; Hao, Y.; Zhuo, M. P.; Liu, Z.; Chen, Q.; Cheng, L. Bimetallic oxide FeWOx nanosheets as multifunctional cascade bioreactors for tumor microenvironment-modulation and enhanced multimodal cancer therapy. Adv. Funct. Mater. 2020, 30, 2002753.

8

Feng, L. L.; Liu, B.; Xie, R.; Wang, D. D.; Qian, C.; Zhou, W. Q.; Liu, J. W.; Jana, D.; Yang, P. P.; Zhao, Y. L. An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 2021, 31, 2006216.

9

Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.

10

Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.

11

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

12

Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

13

Tang, G. H.; He, J. Y.; Liu, J. W.; Yan, X. Y.; Fan, K. L. Nanozyme for tumor therapy: Surface modification matters. Exploration 2021, 1, 75–89.

14

Wang, B.; Wu, H. B.; Zhang, L.; Lou, X. W. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem., Int. Ed. 2013, 52, 4165–4168.

15

Shen, L. H.; Bao, J. F.; Wang, D.; Wang, Y. X.; Chen, Z. W.; Ren, L.; Zhou, X.; Ke, X. B.; Chen, M.; Yang, A. Q. One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bio-application. Nanoscale 2013, 5, 2133–2141.

16

Shi, L. N.; Wang, Y. J.; Zhang, C.; Zhao, Y.; Lu, C.; Yin, B. L.; Yang, Y.; Gong, X. Y.; Teng, L. L.; Liu, Y. L. et al. An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 9562–9572.

17

Dong, S. M.; Dong, Y. S.; Jia, T.; Zhang, F. M.; Wang, Z.; Feng, L. L.; Sun, Q. Q.; Gai, S. L.; Yang, P. Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemodynamic therapy. Chem. Mater. 2020, 32, 9868–9881.

18

Zhao, Z. H.; Xu, K.; Fu, C.; Liu, H.; Lei, M.; Bao, J. F.; Fu, A. L.; Yu, Y.; Zhang, W. G. Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy. Biomaterials 2019, 219, 119379.

19

Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 12624–12631.

20

Cheng, L.; Zhang, F. R.; Wang, S. H.; Pan, X. T.; Han, S. C.; Liu, S.; Ma, J. J.; Wang, H. Y.; Shen, H. Y.; Liu, H. Y. et al. Activation of prodrugs by NIR-triggered release of exogenous enzymes for locoregional chemo-photothermal therapy. Angew. Chem., Int. Ed. 2019, 58, 7728–7732.

21

Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.

22

Xu, M.; Lu, Q. L.; Song, Y. L.; Yang, L. F.; Ren, C. C.; Li, W.; Liu, P.; Wang, Y. L.; Zhu, Y.; Li, N. NIR-II driven plasmon-enhanced cascade reaction for tumor microenvironment-regulated catalytic therapy based on bio-breakable Au-Ag nanozyme. Nano Res. 2020, 13, 2118–2129.

23

Xing, R. R.; Zou, Q. L.; Yuan, C. Q.; Zhao, L. Y.; Chang, R.; Yan, X. H. Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanoagent for cancer theranostics. Adv. Mater. 2019, 31, 1900822.

24

Li, S. K.; Zhang, W. J.; Xing, R. R.; Yuan, C. Q.; Xue, H. D.; Yan, X. H. Supramolecular nanofibrils formed by coassembly of clinically approved drugs for tumor photothermal immunotherapy. Adv. Mater. 2021, 33, 2100595.

25

Zhang, X.; Wasson, M. C.; Shayan, M.; Berdichevsky, E. K.; Ricardo-Noordberg, J.; Singh, Z.; Papazyan, E. K.; Castro, A. J.; Marino, P.; Ajoyan, Z. et al. A historical perspective on porphyrin-based metal-organic frameworks and their applications. Coord. Chem. Rev. 2021, 429, 213615.

26

Tian, J.; Huang, B. X.; Nawaz, M. H.; Zhang, W. A. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev. 2020, 420, 213410.

27

Zhao, Y.; Hu, Y. Q.; Zhong, Y.; Wang, J. F.; Liu, Z. G.; Bai, F.; Zhang, D. M. Missing links between the structures and optical properties of porphyrin assemblies. J. Phys. Chem. C 2021, 125, 22318–22327.

28

Zhong, Y.; Wang, J. F.; Tian, Y. M. Binary ionic porphyrin self-assembly: Structures, and electronic and light-harvesting properties. MRS Bull. 2019, 44, 183–188.

29

Wei, W. B.; Sun, J. J.; Fan, H. Y. Cooperative self-assembly of porphyrins and derivatives. MRS Bull. 2019, 44, 178–182.

30

Wang, L.; Fan, H. Y.; Bai, F. Porphyrin-based photocatalysts for hydrogen production. MRS Bull. 2020, 45, 49–56.

31

Bai, F.; Bian, K. F.; Huang, X.; Wang, Z. W.; Fan, H. Y. Pressure induced nanoparticle phase behavior, property, and applications. Chem. Rev. 2019, 119, 7673–7717.

32

Zhong, Y.; Wang, Z. X.; Zhang, R. F.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. Interfacial self-assembly driven formation of hierarchically structured nanocrystals with photocatalytic activity. ACS Nano 2014, 8, 827–833.

33

Liu, Y. Q.; Wang, L.; Feng, H. X.; Ren, X. T.; Ji, J. J.; Bai, F.; Fan, H. Y. Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614–2619.

34

Wang, X.; Wang, J. F.; Wang, J. H.; Zhong, Y.; Han, L. L.; Yan, J. L.; Duan, P. C.; Shi, B. Y.; Bai, F. Noncovalent self-assembled smart gold(III) porphyrin nanodrug for synergistic chemo-photothermal therapy. Nano Lett. 2021, 21, 3418–3425.

35

Wang, J. F.; Wang, Z. J.; Zhong, Y.; Zou, Y.; Wang, C.; Wu, H. G.; Lee, A.; Yang, W. T.; Wang, X.; Liu, Y. J. et al. Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic therapy. Biomaterials 2020, 229, 119576.

36

Lu, Y. Q.; Lin, J. P.; Wang, L. Q.; Zhang, L. S.; Cai, C. H. Self-assembly of copolymer micelles: Higher-level assembly for constructing hierarchical structure. Chem. Rev. 2020, 120, 4111–4140.

37

Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger, M. Magnetite nanocrystals:   Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 2005, 17, 3044–3049.

38

Zhong, Y.; Wang, J. F.; Zhang, R. F.; Wei, W. B.; Wang, H. M.; Lü, X. P.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals. Nano Lett. 2014, 14, 7175–7179.

39

Wang, J. F.; Zhong, Y.; Wang, X.; Yang, W. T.; Bai, F.; Zhang, B. B.; Alarid, L.; Bian, K. F.; Fan, H. Y. pH-dependent assembly of porphyrin-silica nanocomposites and their application in targeted photodynamic therapy. Nano Lett. 2017, 17, 6916–6921.

40

Ahmadi, S.; Chia, C. H.; Zakaria, S.; Saeedfar, K.; Asim, N. Synthesis of Fe3O4 nanocrystals using hydrothermal approach. J. Magn. Magn. Mater. 2012, 324, 4147–4150.

41

Ahmed, S. R.; Cirone, J.; Chen, A. C. Fluorescent Fe3O4 quantum dots for H2O2 detection. ACS Appl. Nano Mater. 2019, 2, 2076–2085.

42

Wang, Q. Y.; Liang, Z. Y.; Li, F. Y.; Lee, J.; Low, L. E.; Ling, D. S. Dynamically switchable magnetic resonance imaging contrast agents. Exploration 2021, 1, 20210009.

43

Zhao, L. Y.; Liu, Y. M.; Xing, R. R.; Yan, X. H. Supramolecular photothermal effects: A promising mechanism for efficient thermal conversion. Angew. Chem., Int. Ed. 2020, 59, 3793–3801.

44

Wu, F. S.; Chen, L.; Yue, L. L.; Wang, K.; Cheng, K.; Chen, J.; Luo, X. G.; Zhang, T. Small-molecule porphyrin-based organic nanoparticles with remarkable photothermal conversion efficiency for in vivo photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11, 21408–21416.

45

Zhang, S. B.; Guo, W. S.; Wei, J.; Li, C.; Liang, X. J.; Yin, M. Z. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy. ACS Nano 2017, 11, 3797–3805.

46

Zhao, P. H.; Wu, Y. L.; Li, X. Y.; Feng, L. L.; Zhang, L.; Zheng, B. Y.; Ke, M. R.; Huang, J. D. Aggregation-enhanced sonodynamic activity of phthalocyanine-artesunate conjugates. Angew. Chem., Int. Ed. 2022, 61, e202113506.

47

Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 2017, 139, 1921–1927.

48

Yang, Z. C.; Qian, J. S.; Yu, A. Q.; Pan, B. C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl. Acad. Sci. USA. 2019, 116, 6659–6664.

49

Wang, S. Q.; Yang, L. T.; Cho, H. Y.; Dean Chueng, S. T.; Zhang, H. P.; Zhang, Q. Y.; Lee, K. B. Programmed degradation of a hierarchical nanoparticle with redox and light responsivity for self-activated photo-chemical enhanced chemodynamic therapy. Biomaterials 2019, 224, 119498.

50

Lee, J. W.; Jeon, H. J.; Shin, H. J.; Kang, J. K. Superparamagnetic Fe3O4 nanoparticles-carbon nitride nanotube hybrids for highly efficient peroxidase mimetic catalysts. Chem. Commun. 2012, 48, 422–424.

51

Chen, Y. F.; Jiao, L.; Yan, H. Y.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Gu, W. L.; Zhu, C. Z. Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 2020, 92, 13518–13524.

52

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

53

Wang, J. H.; Gao, S. Q.; Wang, X.; Zhang, H. Z.; Ren, X. T.; Liu, J. W.; Bai, F. Self-assembled manganese phthalocyanine nanoparticles with enhanced peroxidase-like activity for anti-tumor therapy. Nano Res. 2022, 15, 2347–2354.

54

Huang, X.; Lai, Y. F.; Braun, G. B.; Reich, N. O. Modularized gold nanocarriers for TAT-mediated delivery of siRNA. Small 2017, 13, 1602473.

55

Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134, 11358–11361.

Nano Research
Pages 9114-9124
Cite this article:
Tian T, Bao J, Wang J, et al. Co-assembly of FeTPP@Fe3O4 nanoparticles with photo-enhanced catalytic activity for synergistic tumor therapy. Nano Research, 2022, 15(10): 9114-9124. https://doi.org/10.1007/s12274-022-4548-3
Topics:

1405

Views

7

Crossref

6

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 26 March 2022
Revised: 16 May 2022
Accepted: 16 May 2022
Published: 23 July 2022
© Tsinghua University Press 2022
Return