Journal Home > Volume 15 , Issue 11

Two-dimensional (2D) indium arsenide (InAs) is promising for future electronic and optoelectronic applications such as high-performance nanoscale transistors, flexible and wearable devices, and high-sensitivity broadband photodetectors, and is advantageous for its heterogeneous integration with Si-based electronics. However, the synthesis of 2D InAs single crystals is challenging because of the nonlayered structure. Here we report the van der Waals epitaxy of 2D InAs single crystals, with their thickness down to 4.8 nm, and their lateral sizes up to ~ 37 μm. The as-grown InAs flakes have high crystalline quality and are homogenous. The thickness can be tuned by growth time and temperature. Moreover, we explore the thickness-dependent optical properties of InAs flakes. Transports measurement reveals that 2D InAs possesses high conductivity and high carrier mobility. Our work introduces InAs to 2D materials family and paves the way for applying 2D InAs in high-performance electronics and optoelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlled growth of two-dimensional InAs single crystals via van der Waals epitaxy

Show Author's information Jiuxiang Dai1Teng Yang2Zhitong Jin1Yunlei Zhong1Xianyu Hu1Jingyi Zou3Weigao Xu4Tao Li1Yuxuan Lin5Xu Zhang3Lin Zhou1( )
School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA

Abstract

Two-dimensional (2D) indium arsenide (InAs) is promising for future electronic and optoelectronic applications such as high-performance nanoscale transistors, flexible and wearable devices, and high-sensitivity broadband photodetectors, and is advantageous for its heterogeneous integration with Si-based electronics. However, the synthesis of 2D InAs single crystals is challenging because of the nonlayered structure. Here we report the van der Waals epitaxy of 2D InAs single crystals, with their thickness down to 4.8 nm, and their lateral sizes up to ~ 37 μm. The as-grown InAs flakes have high crystalline quality and are homogenous. The thickness can be tuned by growth time and temperature. Moreover, we explore the thickness-dependent optical properties of InAs flakes. Transports measurement reveals that 2D InAs possesses high conductivity and high carrier mobility. Our work introduces InAs to 2D materials family and paves the way for applying 2D InAs in high-performance electronics and optoelectronics.

Keywords: two-dimensional materials, van der Waals epitaxy, indium arsenide, nonlayered material

References(40)

[1]

del Alamo, J. A. Nanometre-scale electronics with III-V compound semiconductors. Nature 2011, 479, 317–323.

[2]

Riel, H.; Wernersson, L. E.; Hong, M.; del Alamo, J. A. III-V compound semiconductor transistors—From planar to nanowire structures. MRS Bull. 2014, 39, 668–677.

[3]

Li, D. P.; Lan, C. Y.; Manikandan, A.; Yip, S.; Zhou, Z. Y.; Liang, X. G.; Shu, L.; Chueh, Y. L.; Han, N.; Ho, J. C. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat. Commun. 2019, 10, 1664.

[4]

Wang, X. Z.; Pan, D.; Sun, M.; Lyu, F. J.; Zhao, J. H.; Chen, Q. High-performance room-temperature UV–IR photodetector based on the InAs nanosheet and its wavelength- and intensity-dependent negative photoconductivity. ACS Appl. Mater. Interfaces 2021, 13, 26187–26195.

[5]

Zhang, Y. Y.; Wu, J.; Aagesen, M.; Liu, H. Y. III-V nanowires and nanowire optoelectronic devices. J. Phys. D Appl. Phys. 2015, 48, 463001.

[6]

Otnes, G.; Borgström, M. T. Towards high efficiency nanowire solar cells. Nano Today 2017, 12, 31–45.

[7]
LiZ. Y.TanH. H.JagadishC.FuL. III-V semiconductor single nanowire solar cells: A reviewAdv. Mater. Technol.201831800005(2018)3:92.0.TX;2-L

Li, Z. Y.; Tan, H. H.; Jagadish, C.; Fu, L. III-V semiconductor single nanowire solar cells: A review. Adv. Mater. Technol. 2018, 3, 1800005.

DOI
[8]

Ko, H.; Takei, K.; Kapadia, R.; Chuang, S.; Fang, H.; Leu, P. W.; Ganapathi, K.; Plis, E.; Kim, H. S.; Chen, S. Y. et al. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 2010, 468, 286–289.

[9]

Al Balushi, Z. Y.; Wang, K.; Ghosh, R. K.; Vilá, R. A.; Eichfeld, S. M.; Caldwell, J. D.; Qin, X. Y.; Lin, Y. C.; DeSario, P. A.; Stone, G. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016, 15, 1166–1171.

[10]

Chen, Y. X.; Liu, K. L.; Liu, J. X.; Lv, T. R.; Wei, B.; Zhang, T.; Zeng, M. Q.; Wang, Z. C.; Fu, L. Growth of 2D GaN single crystals on liquid metals. J. Am. Chem. Soc. 2018, 140, 16392–16395.

[11]

Ben, J. W.; Liu, X. K.; Wang, C.; Zhang, Y. P.; Shi, Z. M.; Jia, Y. P.; Zhang, S. L.; Zhang, H.; Yu, W. J.; Li, D. B. et al. 2D III-nitride materials: Properties, growth, and applications. Adv. Mater. 2021, 33, 2006761.

[12]

Liu, Y.; Guo, J.; Zhu, E. B.; Wang, P. Q.; Gambin, V.; Huang, Y.; Duan, X. F. Maximizing the current output in self-aligned graphene-InAs-metal vertical transistors. ACS Nano 2019, 13, 847–854.

[13]
Kim, T. W.; Kim, D. H.; del Alamo, J. A. Logic characteristics of 40 nm thin-channel InAs HEMTs. In Proceedings of the 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM), Takamatsu, Japan, 2010, pp 1–4.
DOI
[14]

Sarkar, D.; Tao, J.; Ahsan, R.; Yang, D. Z.; Orvis, T.; Weng, S. Z.; Greer, F.; Ravichandran, J.; Sideris, C.; Kapadia, R. Monolithic high-mobility InAs on oxide grown at low temperature. ACS Appl. Electron. Mater. 2020, 2, 1997–2002.

[15]

Hjort, M.; Lehmann, S.; Knutsson, J.; Zakharov, A. A.; Du, Y. A.; Sakong, S.; Timm, R.; Nylund, G.; Lundgren, E.; Kratzer, P. et al. Electronic and structural differences between wurtzite and zinc blende InAs nanowire surfaces: Experiment and theory. ACS Nano 2014, 8, 12346–12355.

[16]

Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

[17]

Shen, L. F.; Yip, S.; Lan, C. Y.; Shu, L.; Li, D. P.; Zhou, Z. Y.; Wong, C. Y.; Pun, E. Y. B.; Ho, J. C. Enhanced negative photoconductivity in InAs nanowire phototransistors surface-modified with molecular monolayers. Adv. Mater. Interfaces 2018, 5, 1701104.

[18]

Ram, M. S.; Persson, K. M.; Irish, A.; Jönsson, A.; Timm, R.; Wernersson, L. E. High-density logic-in-memory devices using vertical indium arsenide nanowires on silicon. Nat. Electron. 2021, 4, 914–920.

[19]

Takei, K.; Fang, H.; Kumar, S. B.; Kapadia, R.; Gao, Q.; Madsen, M.; Kim, H. S.; Liu, C. H.; Chueh, Y. L.; Plis, E. et al. Quantum confinement effects in nanoscale-thickness InAs membranes. Nano Lett. 2011, 11, 5008–5012.

[20]

Grim, J. Q.; Bracker, A. S.; Zalalutdinov, M.; Carter, S. G.; Kozen, A. C.; Kim, M.; Kim, C. S.; Mlack, J. T.; Yakes, M.; Lee, B. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 2019, 18, 963–969.

[21]

Lu, H. Y.; Tian, S. C.; Tong, C. Z.; Wang, L. J.; Rong, J. M.; Liu, C. Y.; Wang, H.; Shu, S. L.; Wang, L. J. Extracting more light for vertical emission: High power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band. Light:Sci. Appl. 2019, 8, 108.

[22]

Xu, T. F.; Wang, H. L.; Chen, X. Y.; Luo, M.; Zhang, L. L.; Wang, Y. M.; Chen, F. S.; Shan, C. X.; Yu, C. H. Recent progress on infrared photodetectors based on InAs and InAsSb nanowires. Nanotechnology 2020, 31, 294004.

[23]

Larsson, M. W.; Wagner, J. B.; Wallin, M.; Håkansson, P.; Fröberg, L. E.; Samuelson, L.; Wallenberg, L. R. Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology 2007, 18, 015504.

[24]

Cheng, R. Q.; Wen, Y.; Yin, L.; Wang, F. M.; Wang, F.; Liu, K. L.; Shifa, T. A.; Li, J.; Jiang, C.; Wang, Z. X. et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 2017, 29, 1703122.

[25]

Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505.

[26]

Hang, Q. L.; Wang, F. D.; Carpenter, P. D.; Zemlyanov, D.; Zakharov, D.; Stach, E. A.; Buhro, W. E.; Janes, D. B. Role of molecular surface passivation in electrical transport properties of InAs nanowires. Nano Lett. 2008, 8, 49–55.

[27]

Wang, F.; Wang, Z. X.; Shifa, T. A.; Wen, Y.; Wang, F. M.; Zhan, X. Y.; Wang, Q. S.; Xu, K.; Huang, Y.; Yin, L. et al. Two-dimensional non-layered materials: Synthesis, properties and applications. Adv. Funct. Mater. 2017, 27, 1603254.

[28]

Zhao, B.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc. 2018, 140, 14217–14223.

[29]

Zhao, X. X.; Yin, Q.; Huang, H.; Yu, Q.; Liu, B.; Yang, J.; Dong, Z.; Shen, Z. J.; Zhu, B. P.; Liao, L. et al. Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Res. 2021, 14, 1955–1960.

[30]

Li, N. N.; Zhu, L. L.; Shang, H. H.; Wang, F.; Zhang, Y.; Yao, Y. Y.; Wang, J. J.; Zhan, X. Y.; Wang, F. M.; He, J. et al. Controlled synthesis and Raman study of a 2D antiferromagnetic p-type semiconductor: α-MnSe. Nanoscale 2021, 13, 6953–6964.

[31]
Sahoo, P.; Tyagi, A. K.; Raj, B.; Dhara, S. Surface optical modes in semiconductor nanowires. In Nanowires—Implementations and Applications; Hashim, A. A., Ed.; IntechOpen: London, 2011.
DOI
[32]

Sunny, A.; Balasubramanian, K. Raman spectral probe on size-dependent surface optical phonon modes and magnon properties of NiO nanoparticles. J. Phys. Chem. C 2020, 124, 12636–12644.

[33]

Prasad, N.; Karthikeyan, B. A Raman spectral probe on polar w-ZnS nanostructures and surface optical phonon modes in nanowires. Nanoscale 2019, 11, 4948–4958.

[34]

Chen, S. S.; Liu, H. T.; Chen, F. H.; Zhou, K.; Xue, Y. Z. Synthesis, transfer, and properties of layered FeTe2 nanocrystals. ACS Nano 2020, 14, 11473–11481.

[35]
Habanyama, A. Interface control processes for Ni/Ge and Pd/Ge Schottky and Ohmic contact fabrication: Part one. In Advanced Material and Device Applications with Germanium; Lee, S., Ed.; IntechOpen: London, 2018.
DOI
[36]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[37]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[38]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[39]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[40]

Kokalj, A. XCrysDen—A new program for displaying crystalline structures and electron densities. J. Mol. Graphics Modell. 1999, 17, 176–179.

File
12274_2022_4543_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 February 2022
Revised: 02 May 2022
Accepted: 16 May 2022
Published: 03 June 2022
Issue date: November 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Basic Research Program of China (No. 2021YFA1401400), the start-up funds of Shanghai Jiao Tong University, the National Natural Science Foundation of China (Nos. 52103344, 52031014, 22022507, and 51973111), the National Key Research and Development Program of China (No. 2017YFA0206301), and Beijing National Laboratory for Molecular Sciences (No. BNLMS202004).

Return