Journal Home > Volume 15 , Issue 10

The exploration of low-cost and metal-free nanozymes with oxidase-mimicking activity is highly desired due to their attractive properties and potential applications. However, it is still challenging and remains unexploited to fully realize oxidase-like nanozyme in the emerging covalent organic frameworks (COFs) due to their polymeric nature and weak photoelectric activity. We herein report the first example of the preparation and oxidase-mimicking activity of novel ultrathin two-dimensional (2D) COF (termed as TTPA-COF) nanosheets. The ultrathin TTPA-COF nanosheets with hexagonal layered structure are constructed from two flexible photoactive (diarylamino)benzene-based linkers, and exhibit remarkable catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of O2 due to their large specific surface areas and abundant active sites. Moreover, it is worth noting that the nanozyme activity could be regulated by external light irradiation. Based on the oxidase-mimicking activity of TTPA-COF nanosheets, a green colorimetric sensor is proposed for the sensitive and selective determination of glutathione (GSH) in a wide linear range of 0.5–40 µM with a detection limit of 0.5 µM. This work reported here would open new avenues for the exploration of low-cost and high-efficiency nanozymes, as well as extend the application of 2D COF nanosheets in the fields of catalysis and sensing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin covalent organic framework nanosheet-based photoregulated metal-free oxidase-like nanozyme

Show Author's information Yongwu Peng1,4Minchu Huang1Liangjun Chen1Chengtao Gong1Nanjun Li1Ying Huang2( )Changming Cheng3( )
College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 612900, China
Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China

Abstract

The exploration of low-cost and metal-free nanozymes with oxidase-mimicking activity is highly desired due to their attractive properties and potential applications. However, it is still challenging and remains unexploited to fully realize oxidase-like nanozyme in the emerging covalent organic frameworks (COFs) due to their polymeric nature and weak photoelectric activity. We herein report the first example of the preparation and oxidase-mimicking activity of novel ultrathin two-dimensional (2D) COF (termed as TTPA-COF) nanosheets. The ultrathin TTPA-COF nanosheets with hexagonal layered structure are constructed from two flexible photoactive (diarylamino)benzene-based linkers, and exhibit remarkable catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of O2 due to their large specific surface areas and abundant active sites. Moreover, it is worth noting that the nanozyme activity could be regulated by external light irradiation. Based on the oxidase-mimicking activity of TTPA-COF nanosheets, a green colorimetric sensor is proposed for the sensitive and selective determination of glutathione (GSH) in a wide linear range of 0.5–40 µM with a detection limit of 0.5 µM. This work reported here would open new avenues for the exploration of low-cost and high-efficiency nanozymes, as well as extend the application of 2D COF nanosheets in the fields of catalysis and sensing.

Keywords: ultrathin, oxidase mimics, metal-free, covalent organic framework nanosheets, photoregulated

References(54)

1

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

2

Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

3

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

4

Xi, Z.; Wei, K. C.; Wang, Q. X.; Kim, M. J.; Sun, S. H.; Fung, V.; Xia, X. H. Nickel-platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. J. Am. Chem. Soc. 2021, 143, 2660–2664.

5

Chen, Y. F.; Jiao, L.; Yan, H. Y.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Gu, W. L.; Zhu, C. Z. Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 2020, 92, 13518–13524.

6

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

7

Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224–9237.

8

Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.

9

Li, S. Q.; Liu, X. D.; Chai, H. X.; Huang, Y. M. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC Trends Anal. Chem. 2018, 105, 391–403.

10

Sang, Y. J.; Cao, F. F.; Li, W.; Zhang, L.; You, Y. W.; Deng, Q. Q.; Dong, K.; Ren, J. S.; Qu, X. G. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc. 2020, 142, 5177–5183.

11

Wu, W. W.; Huang, L.; Wang, E. K.; Dong, S. J. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 2020, 11, 9741–9756.

12

Shen, L. H.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 2021, 93, 1221–1231.

13

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

14

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

15

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

16

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

17

Zhang, X. J.; Lin, S. J.; Liu, S. W.; Tan, X. L.; Dai, Y.; Xia, F. Advances in organometallic/organic nanozymes and their applications. Coord. Chem. Rev. 2021, 429, 213652.

18

Bhattacharyya, S.; Ali, S. R.; Venkateswarulu, M.; Howlader, P.; Zangrando, E.; De, M.; Mukherjee, P. S. Self-assembled Pd12 coordination cage as photoregulated oxidase-like nanozyme. J. Am. Chem. Soc. 2020, 142, 18981–18989.

19

Gao, F.; Shao, T. Y.; Yu, Y. P.; Xiong, Y. J.; Yang, L. H. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nat. Commun. 2021, 12, 745.

20

He, S. B.; Zhuang, Q. Q.; Yang, L.; Lin, M. Y.; Kuang, Y.; Peng, H. P.; Deng, H. H.; Xia, X. H.; Chen, W. A heparinase sensor based on a ternary system of Hg2+-heparin-osmium nanoparticles. Anal. Chem. 2020, 92, 1635–1642.

21

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

22

Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, 1903108.

23

Li, D.; Liu, B. W.; Huang, P. J. J.; Zhang, Z. J.; Liu, J. W. Highly active fluorogenic oxidase-mimicking NiO nanozymes. Chem. Commun. 2018, 54, 12519–12522.

24

Yan, X.; Song, Y.; Wu, X. L.; Zhu, C. Z.; Su, X. G.; Du, D.; Lin, Y. H. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 2017, 9, 2317–2323.

25

Jin, T.; Li, Y. L.; Jing, W. J.; Li, Y. C.; Fan, L. Z.; Li, X. H. Cobalt-based metal organic frameworks: A highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol. Chem. Commun. 2020, 56, 659–662.

26

Li, M. H.; Chen, J. X.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J. Am. Chem. Soc. 2020, 142, 15569–15574.

27

Liu, Y. F.; Zhou, M.; Cao, W.; Wang, X. Y.; Wang, Q.; Li, S. R.; Wei, H. Light-responsive metal-organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 2019, 91, 8170–8175.

28

Zhang, J. Y.; Lu, X. M.; Tang, D. D.; Wu, S. H.; Hou, X. D.; Liu, J. W.; Wu, P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 40808–40814.

29

Jin, P.; Niu, X. Y.; Zhang, F.; Dong, K.; Dai, H. X.; Zhang, H. G.; Wang, W. F.; Chen, H. L.; Chen, X. G. Stable and reusable light-responsive reduced covalent organic framework (COF-300-AR) as a oxidase-mimicking catalyst for GSH detection in cell lysate. ACS Appl. Mater. Interfaces 2020, 12, 20414–20422.

30

Chen, X. L.; Sun, J. Y.; Zhang, Q.; Jiang, X. K.; Gao, F. Light-activated semiconducting polymer dots as mimic oxidases with remarkable catalytic efficiency: Characteristics, mechanisms, and applications. Chem. Commun. 2020, 56, 3035–3038.

31

Li, G. R.; Ma, W. D.; Yang, Y. X.; Zhong, C.; Huang, H.; Ouyang, D.; He, Y. T.; Tian, W. C.; Lin, J.; Lin, Z. A. Nanoscale covalent organic frameworks with donor–acceptor structures as highly efficient light-responsive oxidase-like mimics for colorimetric detection of glutathione. ACS Appl. Mater. Interfaces 2021, 13, 49482–49489.

32

Ni, P. J.; Liu, S. Y.; Wang, B.; Chen, C. X.; Jiang, Y. Y.; Zhang, C. H.; Chen, J. B.; Lu, Y. Z. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J. Hazard. Mater. 2021, 411, 125106.

33

Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Chen, Y. Z.; Li, Z. E.; Xie, S. L.; He, T.; Lu, Z.; Yang, H.; Jiang, D. L. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242.

34

Rodríguez-San-Miguel, D.; Montoro, C.; Zamora, F. Covalent organic framework nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2020, 49, 2291–2302.

35

Tao, Y.; Ji, W. Y.; Ding, X. S.; Han, B. H. Exfoliated covalent organic framework nanosheets. J. Mater. Chem. A 2021, 9, 7336–7365.

36
Chen, L. J.; Huang, M. C.; Chen, B.; Gong, C. T.; Li, N. J.; Cheng, H. F.; Chen, Y.; Peng, Y. W.; Xu, G. D. Two-dimensional covalent organic framework nanosheets: Synthesis and energy-related applications. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2021.10.060.
37

Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

38

Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

39

Dong, J. Q.; Li, X.; Peh, S. B.; Yuan, Y. D.; Wang, Y. X.; Ji, D. X.; Peng, S. J.; Liu, G. L.; Ying, S. M.; Yuan, D. Q. et al. Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification. Chem. Mater. 2019, 31, 146–160.

40

Shi, X. S.; Ma, D. W.; Xu, F.; Zhang, Z.; Wang, Y. Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chem. Sci. 2020, 11, 989–996.

41

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

42

Huang, Y.; Zhao, M. T.; Han, S. K.; Lai, Z. C.; Yang, J.; Tan, C. L.; Ma, Q. L.; Lu, Q. P.; Chen, J. Z.; Zhang, X. et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.

43

Liu, Y.; Chen, Z.; Shao, Z. F.; Guo, R. Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic. Chem. Commun. 2021, 57, 3399–3402.

44

Wang, M. K.; Zhou, X. B.; Wang, S.; Xie, X. L.; Wang, Y. F.; Su, X. G. Fabrication of bioresource-derived porous carbon-supported iron as an efficient oxidase mimic for dual-channel biosensing. Anal. Chem. 2021, 93, 3130–3137.

45

Liu, Y.; Wang, X.; Zhao, Y. J.; Wu, Q. Y.; Nie, H. D.; Si, H. L.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 2022, 15, 4000–4007.

46

Chen, Q. M.; Li, S. Q.; Liu, Y.; Zhang, X. D.; Tang, Y.; Chai, H. X.; Huang, Y. M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B: Chem. 2020, 305, 127511.

47

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

48

He, X.; Wu, M.; Ao, Z. M.; Lai, B.; Zhou, Y. B.; An, T. C.; Wang, S. B. Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: Simple synthesis and contribution of carbon species. J. Hazard. Mater. 2021, 403, 124048.

49

Lee, S.; Li, J.; Zhou, X.; Yin, J.; Yoon, J. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes. Coord. Chem. Rev. 2018, 366, 29–68.

50

Wang, S.; Wang, M. K.; Liu, Y. C.; Meng, X. Y.; Ye, Y.; Song, X. W.; Liang, Z. Q. Novel D-π-A conjugated microporous polymer as visible light-driven oxidase mimic for efficient colorimetric detection of glutathione. Sens. Actuators B: Chem. 2021, 326, 128808.

51

Wu, X. W.; Han, X.; Xu, Q. S.; Liu, Y. H.; Yuan, C.; Yang, S.; Liu, Y.; Jiang, J. W.; Cui, Y. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. J. Am. Chem. Soc. 2019, 141, 7081–7089.

52

Li, S. Q.; Wang, L. T.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. A Co, N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection. Sens. Actuators B: Chem. 2018, 264, 312–319.

53

Zhang, H. J.; Chen, J.; Yang, Y. L.; Wang, L.; Li, Z.; Qiu, H. D. Discriminative detection of glutathione in cell lysates based on oxidase-like activity of magnetic nanoporous graphene. Anal. Chem. 2019, 91, 5004–5010.

54

Liu, C. Y.; Cai, Y. Y.; Wang, J.; Liu, X.; Ren, H.; Yan, L.; Zhang, Y. J.; Yang, S. Q.; Guo, J.; Liu, A. H. Facile preparation of homogeneous copper nanoclusters exhibiting excellent tetraenzyme mimetic activities for colorimetric glutathione sensing and fluorimetric ascorbic acid sensing. ACS Appl. Mater. Interfaces 2020, 12, 42521–42530.

File
12274_2022_4541_MOESM1_ESM.pdf (862.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 February 2022
Revised: 05 April 2022
Accepted: 16 May 2022
Published: 15 June 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 21976166, 22006122, and 21405144), the research funding of “Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang” (No. 2020R01002) and the Class D of Qianjiang Talent Program (No. ZD20011250001), the Science Challenge Project (No. TZ2016004), the Project of State Key Laboratory of Environment-friendly Energy Materials (No. 18zd320303), and the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars of Sichuan Province (No. 19zd3200). Y. W. P. thanks the financial support from the Opening Project of Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource (No. 2021ABPCR004).

Return