Journal Home > Volume 15 , Issue 10

Chiral quantum dot (in rod)-light-emitting diodes (CQLEDs) with circularly polarized electroluminescence (CPEL) have driven interest in the future display, communication, and storage industries. However, the preparation of CQLEDs is still a challenging unresolved. Herein, we fabricated CQLEDs through spin-coating evaporation of chiral CdSe/CdS quantum rods (CCCQs) colloidal solution on indium tin oxide substrate. The CCCQs were synthesized via an isotropically epitaxial growth with cholic acid as the symmetry breaking agent, which induced one-direction chiral dislocation around the c axis of their hexagonal crystal structure. The CCCQs were ranked side-by-side in right-handed chiral arrangement with helical axis perpendicular to substrate due to chiral driving force of the cholic acid arrangement. The CQLEDs exhibited a negative CPEL signal at 600 nm with a |gEL| of 2 × 10−4, which is ascribable to the selective filtration on emission arising from the circular Bragg resonance by quasi-photonic crystal structures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chiral CdSe/CdS quantum dot (in rod)-light-emitting diodes with circularly polarized electroluminescence

Show Author's information Tianwei Duan1Jing Ai2Sujie Chen3Gufeng He3Xiaojun Guo3( )Lu Han2( )Shunai Che1,2Yingying Duan2( )
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Chiral quantum dot (in rod)-light-emitting diodes (CQLEDs) with circularly polarized electroluminescence (CPEL) have driven interest in the future display, communication, and storage industries. However, the preparation of CQLEDs is still a challenging unresolved. Herein, we fabricated CQLEDs through spin-coating evaporation of chiral CdSe/CdS quantum rods (CCCQs) colloidal solution on indium tin oxide substrate. The CCCQs were synthesized via an isotropically epitaxial growth with cholic acid as the symmetry breaking agent, which induced one-direction chiral dislocation around the c axis of their hexagonal crystal structure. The CCCQs were ranked side-by-side in right-handed chiral arrangement with helical axis perpendicular to substrate due to chiral driving force of the cholic acid arrangement. The CQLEDs exhibited a negative CPEL signal at 600 nm with a |gEL| of 2 × 10−4, which is ascribable to the selective filtration on emission arising from the circular Bragg resonance by quasi-photonic crystal structures.

Keywords: electroluminescence, circularly polarized light emission, helical assembly, chiral nanoparticle, CdSe/CdS nanorods

References(21)

1

Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725–728.

2

Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 2014, 114, 4496–4539.

3

Berezovsky, J.; Mikkelsen, M. H.; Gywat, O.; Stoltz, N. G.; Coldren, L. A.; Awschalom, D. D. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 2006, 314, 1916–1920.

4

Albano, G.; Pescitelli, G.; Di Bari, L. Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 2020, 120, 10145–10243.

5

Chen, W. J.; Ma, K.; Duan, P. F.; Ouyang, G. H.; Zhu, X. F.; Zhang, L.; Liu, M. H. Circularly polarized luminescence of nanoassemblies via multi-dimensional chiral architecture control. Nanoscale 2020, 12, 19497–19515.

6

Liu, C. C.; Yang, J. C.; Lam, J. W. Y.; Feng, H. T.; Tang, B. Z. Chiral assembly of organic luminogens with aggregation-induced emission. Chem. Sci. 2022, 13, 611–632.

7

Han, J. M.; Guo, S.; Lu, H.; Liu, S. J.; Zhao, Q.; Huang, W. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mate. 2018, 6, 1800538.

8

Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331–1343.

9

Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.

10

Peeters, E.; Christiaans, M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H. P. J. M.; Meijer, E. W. Circularly polarized electroluminescence from a polymer light-emitting diode. J. Am. Chem. Soc. 1997, 119, 9909–9910.

11

Li, M.; Wang, Y. F.; Zhang, D. D.; Duan, L.; Chen, C. F. Axially chiral TADF-active enantiomers designed for efficient blue circularly polarized electroluminescence. Angew. Chem., Int. Ed. 2020, 59, 3500–3504.

12

Xu, Y. C.; Wang, Q. Y.; Cai, X. L.; Li, C. L.; Wang, Y. Highly efficient electroluminescence from narrowband green circularly polarized multiple resonance thermally activated delayed fluorescence enantiomers. Adv. Mater. 2021, 33, 2100652.

13

Zhang, Y. P.; Liang, X.; Luo, X. F.; Song, S. Q.; Li, S.; Wang, Y.; Mao, Z. P.; Xu, W. Y.; Zheng, Y. X.; Zuo, J. L. et al. Chiral spiro-axis induced blue thermally activated delayed fluorescence material for efficient circularly polarized oleds with low efficiency roll-off. Angew. Chem., Int. Ed. 2021, 60, 8435–8440.

14

Qian, G. W.; Yang, X. F.; Wang, X. B.; Herod, J. D.; Bruce, D. W.; Wang, S. Y.; Zhu, W. G.; Duan, P. F.; Wang, Y. F. Chiral platinum-based metallomesogens with highly efficient circularly polarized electroluminescence in solution-processed organic light-emitting diodes. Adv. Opt. Mater. 2020, 8, 2000775.

15

Lu, G. Z.; Wu, Z. G.; Wu, R. X.; Cao, X. S.; Zhou, L.; Zheng, Y. X.; Yang, C. L. Semitransparent circularly polarized phosphorescent organic light-emitting diodes with external quantum efficiency over 30% and dissymmetry factor close to 10−2. Adv. Funct. Mater. 2021, 31, 2102898.

16

Hong, J.; Kim, S.; Park, G.; Lee, Y.; Kim, H.; Kim, S.; Lee, T. W.; Kim, C.; You, Y. Chiral polymer hosts for circularly polarized electroluminescence devices. Chem. Sci. 2021, 12, 8668–8681.

17

Wan, L.; Shi, X. Y.; Wade, J.; Campbell, A. J.; Fuchter, M. J. Strongly circularly polarized crystalline and β-phase emission from poly(9, 9-dioctylfluorene)-based deep-blue light-emitting diodes. Adv. Opt. Mater. 2021, 9, 2100066.

18

Duan, T. W.; Ai, J.; Cui, X. Y.; Feng, X. W.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Spontaneous chiral self-assembly of CdSe@CdS nanorods. Chem 2021, 7, 2695–2707.

19

Duan, T. W.; Ai, J.; Duan, Y. Y.; Han, L.; Che, S. N. Self-assembly of chiral nematic-like films with chiral nanorods directed by chiral molecules. Chem. Mater. 2021, 33, 6227–6232.

20

Bisoyi, H. K.; Li, Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures. Angew. Chem., Int. Ed. 2016, 55, 2994–3010.

21

Zhang, Y. B.; Zhang, F. J.; Wang, H. Z.; Wang, L.; Wang, F. F.; Lin, Q. L.; Shen, H. B.; Li, L. S. High-efficiency CdSe/CdS nanorod-based red light-emitting diodes. Opt. Express 2019, 27, 7935–7944.

File
12274_2022_4536_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2022
Revised: 12 May 2022
Accepted: 13 May 2022
Published: 16 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21931008, S. C.; 21922304, 21873072, L. H., and 21975184, Y. D.), the National Key R&D Program of China (No. 2021YFA1200300, S. C.), and the Science Foundation of the Shanghai Municipal Science and Technology Commission (No. 19JC1410300, S. C.).

Return