Journal Home > Volume 15 , Issue 11

Controlled breakdown has recently emerged as a highly accessible technique to fabricate solid-state nanopores. However, in its most common form, controlled breakdown creates a single nanopore at an arbitrary location in the membrane. Here, we introduce a new strategy whereby breakdown is performed by applying the electric field between an on-chip electrode and an electrolyte solution in contact with the opposite side of the membrane. We demonstrate two advantages of this method. First, we can independently fabricate multiple nanopores at given positions in the membrane by localising the applied field to the electrode. Second, we can create nanopores that are self-aligned with complementary nanoelectrodes by applying voltages to the on-chip electrodes to locally heat the membrane during controlled breakdown. This new controlled breakdown method provides a path towards the affordable, rapid, and automatable fabrication of arrays of nanopores self-aligned with complementary on-chip nanostructures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Localised solid-state nanopore fabrication via controlled breakdown using on-chip electrodes

Show Author's information Jasper P. Fried1,2( )Jacob L. Swett1Binoy Paulose Nadappuram3Aleksandra Fedosyuk3Alex Gee1Ondrej E. Dyck4James R. Yates5Aleksandar P. Ivanov3Joshua B. Edel3Jan A. Mol6
Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
Department of Chemistry, Imperial College London, London, W12 0BZ, UK
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, UK

Abstract

Controlled breakdown has recently emerged as a highly accessible technique to fabricate solid-state nanopores. However, in its most common form, controlled breakdown creates a single nanopore at an arbitrary location in the membrane. Here, we introduce a new strategy whereby breakdown is performed by applying the electric field between an on-chip electrode and an electrolyte solution in contact with the opposite side of the membrane. We demonstrate two advantages of this method. First, we can independently fabricate multiple nanopores at given positions in the membrane by localising the applied field to the electrode. Second, we can create nanopores that are self-aligned with complementary nanoelectrodes by applying voltages to the on-chip electrodes to locally heat the membrane during controlled breakdown. This new controlled breakdown method provides a path towards the affordable, rapid, and automatable fabrication of arrays of nanopores self-aligned with complementary on-chip nanostructures.

Keywords: dielectric breakdown, nanofabrication, solid-state nanopores, single-molecule sensing, nanopore arrays

References(68)

[1]

Yusko, E. C.; Bruhn, B. R.; Eggenberger, O. M.; Houghtaling, J.; Rollings, R. C.; Walsh, N. C.; Nandivada, S.; Pindrus, M.; Hall, A. R.; Sept, D. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 2017, 12, 360–367.

[2]

Alfaro, J. A.; Bohländer, P.; Dai, M. J.; Filius, M.; Howard, C. J.; Van Kooten, X. F.; Ohayon, S.; Pomorski, A.; Schmid, S.; Aksimentiev, A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 2021, 18, 604–617.

[3]

Restrepo-Pérez, L.; Joo, C.; Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 2018, 13, 786–796.

[4]

Bell, N. A. W.; Keyser, U. F. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat. Nanotechnol. 2016, 11, 645–651.

[5]

Chen, K. K.; Zhu, J. B.; Bošković, F.; Keyser, U. F. Nanopore-based DNA hard drives for rewritable and secure data storage. Nano Lett. 2020, 20, 3754–3760.

[6]

Chuah, K.; Wu, Y. F.; Vivekchand, S. R. C.; Gaus, K.; Reece, P. J.; Micolich, A. P.; Gooding, J. J. Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples. Nat. Commun. 2019, 10, 2109.

[7]

Wu, Y. F.; Yao, Y.; Cheong, S.; Tilley, R. D.; Gooding, J. J. Selectively detecting attomolar concentrations of proteins using gold lined nanopores in a nanopore blockade sensor. Chem. Sci. 2020, 11, 12570–12579.

[8]

Cai, S. L.; Pataillot-Meakin, T.; Shibakawa, A.; Ren, R.; Bevan, C. L.; Ladame, S.; Ivanov, A. P.; Edel, J. B. Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nat. Commun. 2021, 12, 3515.

[9]

Rozevsky, Y.; Gilboa, T.; Van Kooten, X. F.; Kobelt, D.; Huttner, D.; Stein, U.; Meller, A. Quantification of mRNA expression using single-molecule nanopore sensing. ACS Nano 2020, 14, 13964–13974.

[10]

Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209–215.

[11]

Miles, B. N.; Ivanov, A. P.; Wilson, K. A.; Doğan, F.; Japrung, D.; Edel, J. B. Single molecule sensing with solid-state nanopores: Novel materials, methods, and applications. Chem. Soc. Rev. 2013, 42, 15–28.

[12]

Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A. P.; Edel, J. B. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 952.

[13]

Tsutsui, M.; Ryuzaki, S.; Yokota, K.; He, Y. H.; Washio, T.; Tamada, K.; Kawai, T. Field effect control of translocation dynamics in surround-gate nanopores. Commun. Mater. 2021, 2, 29.

[14]

Luan, B. Q.; Peng, H. B.; Polonsky, S.; Rossnagel, S.; Stolovitzky, G.; Martyna, G. Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. Phys. Rev. Lett. 2010, 104, 238103.

[15]

Paik, K. H.; Liu, Y.; Tabard-Cossa, V.; Waugh, M. J.; Huber, D. E.; Provine, J.; Howe, R. T.; Dutton, R. W.; Davis, R. W. Control of DNA capture by nanofluidic transistors. ACS Nano 2012, 6, 6767–6775.

[16]

Nam, S. W.; Rooks, M. J.; Kim, K. B.; Rossnagel, S. M. Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 2009, 9, 2044–2048.

[17]

Freedman, K. J.; Otto, L. M.; Ivanov, A. P.; Barik, A.; Oh, S. H.; Edel, J. B. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat. Commun. 2016, 7, 10217.

[18]

Xie, P.; Xiong, Q. H.; Fang, Y.; Qing, Q.; Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 2012, 7, 119–125.

[19]

Traversi, F.; Raillon, C.; Benameur, S. M.; Liu, K.; Khlybov, S.; Tosun, M.; Krasnozhon, D.; Kis, A.; Radenovic, A. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 2013, 8, 939–945.

[20]

Heerema, S. J.; Vicarelli, L.; Pud, S.; Schouten, R. N.; Zandbergen, H. W.; Dekker, C. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano 2018, 12, 2623–2633.

[21]

Graf, M.; Lihter, M.; Altus, D.; Marion, S.; Radenovic, A. Transverse detection of DNA using a MoS2 nanopore. Nano Lett. 2019, 19, 9075–9083.

[22]

Zhu, X.; Li, X. J.; Gu, C. M.; Ye, Z.; Cao, Z.; Zhang, X. Y.; Jin, C. H.; Liu, Y. Monolithic integration of vertical thin-film transistors in nanopores for charge sensing of single biomolecules. ACS Nano 2021, 15, 9882–9889.

[23]

Ivanov, A. P.; Instuli, E.; McGilvery, C. M.; Baldwin, G.; McComb, D. W.; Albrecht, T.; Edel, J. B. DNA tunneling detector embedded in a nanopore. Nano Lett. 2011, 11, 279–285.

[24]

Ivanov, A. P.; Freedman, K. J.; Kim, M. J.; Albrecht, T.; Edel, J. B. High precision fabrication and positioning of nanoelectrodes in a nanopore. ACS Nano 2014, 8, 1940–1948.

[25]

Fanget, A.; Traversi, F.; Khlybov, S.; Granjon, P.; Magrez, A.; Forró, L.; Radenovic, A. Nanopore integrated nanogaps for DNA detection. Nano Lett. 2014, 14, 244–249.

[26]

Tsutsui, M.; Rahong, S.; Iizumi, Y.; Okazaki, T.; Taniguchi, M.; Kawai, T. Single-molecule sensing electrode embedded in-plane nanopore. Sci. Rep. 2011, 1, 46.

[27]

Tang, L. H.; Nadappuram, B. P.; Cadinu, P.; Zhao, Z. Y.; Xue, L.; Yi, L.; Ren, R.; Wang, J. W.; Ivanov, A. P.; Edel, J. B. Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nat. Commun. 2021, 12, 913.

[28]

Cecchini, M. P.; Wiener, A.; Turek, V. A.; Chon, H.; Lee, S.; Ivanov, A. P.; McComb, D. W.; Choo, J.; Albrecht, T.; Maier, S. A. et al. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. Nano Lett. 2013, 13, 4602–4609.

[29]

Freedman, K. J.; Crick, C. R.; Albella, P.; Barik, A.; Ivanov, A. P.; Maier, S. A.; Oh, S. H.; Edel, J. B. On-demand surface- and tip-enhanced Raman spectroscopy using dielectrophoretic trapping and nanopore sensing. ACS Photonics 2016, 3, 1036–1044.

[30]

Shi, X.; Gao, R.; Ying, Y. L.; Si, W.; Chen, Y. F.; Long, Y. T. A scattering nanopore for single nanoentity sensing. ACS Sens. 2016, 1, 1086–1090.

[31]

Verschueren, D. V.; Pud, S.; Shi, X.; de Angelis, L.; Kuipers, L.; Dekker, C. Label-free optical detection of DNA translocations through plasmonic nanopores. ACS Nano 2019, 13, 61–70.

[32]

Shi, X.; Verschueren, D. V.; Dekker, C. Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing. Nano Lett. 2018, 18, 8003–8010.

[33]

Chang, S.; He, J.; Kibel, A.; Lee, M.; Sankey, O.; Zhang, P. M.; Lindsay S. Tunnelling readout of hydrogen-bonding-based recognition. Nat. Nanotechnol. 2009, 4, 297–301.

[34]

Parkin, W. M.; Drndić, M. Signal and noise in FET-nanopore devices. ACS Sens. 2018, 3, 313–319.

[35]

Healy, K.; Ray, V.; Willis, L. J.; Peterman, N.; Bartel, J.; Drndić, M. Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution. Electrophoresis 2012, 33, 3488–3496.

[36]

Fried, J. P.; Swett, J. L.; Bian, X. Y.; Mol, J. A. Challenges in fabricating graphene nanodevices for electronic DNA sequencing. MRS Commun. 2018, 8, 703–711.

[37]

Kwok, H.; Briggs, K.; Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS One 2014, 9, e92880.

[38]

Waugh, M.; Briggs, K.; Gunn, D.; Gibeault, M.; King, S.; Ingram, Q.; Jimenez, A. M.; Berryman, S.; Lomovtsev, D.; Andrzejewski, L. et al. Solid-state nanopore fabrication by automated controlled breakdown. Nat. Protoc. 2020, 15, 122–143.

[39]

Fried, J. P.; Swett J. L.; Nadappuram, B. P.; Mol, J. A.; Edel, J. B.; Ivanov, A. P.; Yates, J. R. In situ solid-state nanopore fabrication. Chem. Soc. Rev. 2021, 50, 4974–4992.

[40]

Leung, C.; Briggs, K.; Laberge, M. P.; Peng, S.; Waugh, M.; V. Tabard-Cossa. Mechanisms of solid-state nanopore enlargement under electrical stress. Nanotechnology 2020, 31, 44LT01.

[41]

Zrehen, A.; Gilboa, T.; Meller, A. Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown. Nanoscale 2017, 9, 16437–16445.

[42]

Zhang, Y. N.; Miyahara, Y.; Derriche, N.; Yang, W.; Yazda, K.; Capaldi, X.; Liu, Z. Z.; Grutter, P.; Reisner, W. Nanopore formation via Tip-controlled local breakdown using an atomic force microscope. Small Methods 2019, 3, 1900147.

[43]

Yazda, K.; Bleau, K.; Zhang, Y. N.; Capaldi, X.; St-Denis, T.; Grutter, P.; Reisner, W. W. High osmotic power generation via nanopore arrays in hybrid hexagonal boron nitride/silicon nitride membranes. Nano Lett. 2021, 21, 4152–4159.

[44]

Carlsen, A. T.; Briggs, K.; Hall, A. R.; Tabard-Cossa, V. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Nanotechnology 2017, 28, 085304.

[45]

Arcadia, C. E.; Reyes, C. C.; Rosenstein, J. K. In situ nanopore fabrication and single-molecule sensing with microscale liquid contacts. ACS Nano 2017, 11, 4907–4915.

[46]

Yin, B. H.; Fang, S. X.; Zhou, D. M.; Liang, L. Y.; Wang, L.; Wang, Z. B.; Wang, D. Q.; Yuan, J. H. Nanopore fabrication via transient high electric field controlled breakdown and detection of single RNA molecules. ACS Appl. Bio Mate. 2020, 3, 6368–6375.

[47]

Tahvildari, R.; Beamish, E.; Tabard-Cossa, V.; Godin, M. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown. Lab Chip 2015, 15, 1407–1411.

[48]

Spitzberg, J. D.; van Kooten, X. F.; Bercovici, M.; Meller, A. Microfluidic device for coupling isotachophoretic sample focusing with nanopore single-molecule sensing. Nanoscale 2020, 12, 17805–17811.

[49]

St-Denis, T.; Yazda, K.; Capaldi, X.; Bustamante, J.; Safari, M.; Miyahara, Y.; Zhang, Y.; Grutter, P.; Reisner, W. An apparatus based on an atomic force microscope for implementing tip-controlled local breakdown. Rev. Sci. Instrum. 2019, 90, 123703.

[50]

Pud, S.; Verschueren, D.; Vukovic, N.; Plesa, C.; Jonsson, M. P.; Dekker, C. Self-aligned plasmonic nanopores by optically controlled dielectric breakdown. Nano Lett. 2015, 15, 7112–7117.

[51]

Fried, J. P.; Swett, J. L.; Nadappuram, B. P.; Fedosyuk, A.; Sousa, P. M.; Briggs, D. P.; Ivanov, A. P.; Edel, J. B.; Mol, J. A.; Yates, J. R. Understanding electrical conduction and nanopore formation during controlled breakdown. Small 2021, 17, 2102543.

[52]

Anderson, B. N.; Assad, O. N.; Gilboa, T.; Squires, A. H.; Bar, D.; Meller, A. Probing solid-state nanopores with light for the detection of unlabeled analytes. ACS Nano 2014, 8, 11836–11845.

[53]

Ivankin, A.; Henley, R. Y.; Larkin, J.; Carson, S.; Toscano, M. L.; Wanunu, M. Label-free optical detection of biomolecular translocation through nanopore arrays. ACS Nano 2014, 8, 10774–10781.

[54]

Kwok, H.; Waugh, M.; Bustamante, J.; Briggs, K.; Tabard-Cossa, V. Long passage times of short ssDNA molecules through metallized nanopores fabricated by controlled breakdown. Adv. Funct. Mater. 2014, 24, 7745–7753.

[55]

Beamish, E.; Kwok, H.; Tabard-Cossa, V.; Godin, M. Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology 2012, 23, 405301.

[56]

Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 2011, 22, 315101.

[57]

Spitzberg, J. D.; Zrehen, A.; van Kooten, X. F.; Meller, A. Plasmonic-nanopore biosensors for superior single-molecule detection. Adv. Mater. 2019, 31, 1900422.

[58]

Garoli, D.; Yamazaki, H.; Maccaferri, N.; Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Lett. 2019, 19, 7553–7562.

[59]

Bhat, A.; Gwozdz, P. V.; Seshadri, A.; Hoeft, M.; Blick, R. H. Tank circuit for ultrafast single-particle detection in micropores. Phys. Rev. Lett. 2018, 121, 078102.

[60]

Yanagi, I.; Takeda, K. I. Current-voltage characteristics of SiN membranes in solution. ACS Appl. Electron. Mater. 2020, 2, 2760–2771.

[61]

Gehring, P.; Thijssen, J. M.; van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 2019, 1, 381–396.

[62]

Perrin, M. L.; Burzurí, E.; van der Zant, H. S. J. Single-molecule transistors. Chem. Soc. Rev. 2015, 44, 902–919.

[63]

Hadeed, F. O.; Durkan, C. Controlled fabrication of 1−2 nm nanogaps by electromigration in gold and gold-palladium nanowires. Appl. Phys. Lett. 2007, 91, 123120.

[64]

Jeong, W.; Kim, K.; Kim, Y.; Lee, W.; Reddy, P. Characterization of nanoscale temperature fields during electromigration of nanowires. Sci. Rep. 2014, 4, 5690.

[65]

Briggs, K.; Kwok, H.; Tabard-Cossa, V. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. Small 2014, 10, 2077–2086.

[66]

Fragasso, A.; Schmid, S.; Dekker, C. Comparing current noise in biological and solid-state nanopores. ACS Nano 2020, 14, 1338–1349.

[67]

Chen, P.; Gu, J. J.; Brandin, E.; Kim, Y. R.; Wang, Q.; Branton, D. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 2004, 4, 2293–2298.

[68]

Grosberg, A. Y.; Rabin, Y. DNA capture into a nanopore: Interplay of diffusion and electrohydrodynamics. J. Chem. Phys. 2010, 133, 165102.

File
12274_2022_4535_MOESM1_ESM.pdf (767.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 February 2022
Revised: 07 April 2022
Accepted: 11 May 2022
Published: 25 June 2022
Issue date: November 2022

Copyright

© The Author(s) 2022

Acknowledgements

The authors would like to thank Kevin Lester and Daryl Briggs for their assistance with preparing the wafers. J. P. F. thanks the Oxford Australia Scholarship committee and the University of Western Australia for funding. Substrate, membrane, and some electrode fabrication were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. J. R. Y. was funded by an FCT contract according to DL57/2016, [SFRH/BPD/80071/2011]. Work in J. R. Y.’s lab was funded by national funds through FCT - Fundação para a Ciência e a Tecnologia, I. P., Project MOSTMICRO-ITQB with refs UIDB/04612/2020 and UIDP/04612/2020 and Project PTDC/NAN-MAT/31100/2017. J. M. was supported through the UKRI Future Leaders Fellowship, Grant No. MR/S032541/1, with in-kind support from the Royal Academy of Engineering. A. P. I. and J. B. E. acknowledge support from BBSRC grant BB/R022429/1, EPSCR grant EP/P011985/1, and Analytical Chemistry Trust Fund grant 600322/05. This project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Nos. 724300 and 875525). O. D. and STEM investigations were supported by the Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy, Office of Science User Facility. The authors would like to thank Andrew Briggs for providing funding for some of the equipment and facilities used.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return