AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber

Yan Guo1Hu Liu1( )Dedong Wang1Zeinhom M. El-Bahy2Jalal T. Althakafy3Hala M. Abo-Dief4Zhanhu Guo5Ben Bin Xu6Chuntai Liu1Changyu Shen1
Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Mecca 21955, Saudi Arabia
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
Show Author Information

Graphical Abstract

Hierarchical heterostructure WS2/CoS2@carbonized cotton fiber (CCF) derived from metal-organic frameworks (MOFs) anchored cotton fiber possesses multiple loss mechanisms and exhibits high-performance electromagnetic wave absorption capacity.

Abstract

Rational construction of hierarchical multi-component materials with abundant heterostructure is evolving as a promising strategy to achieve excellent metal-organic frameworks (MOFs) based electromagnetic wave (EMW) absorbers. Herein, hierarchical heterostructure WS2/CoS2@carbonized cotton fiber (CCF) was fabricated using the ZIF-67 MOFs nanosheets anchored cotton fiber (ZIF-67@CF) as a precursor through the tungsten etching, sulfurization, and carbonization process. Apart from the synergetic effect of dielectric-magnetic dual-loss mechanism, the hierarchical heterostructure and multicomponent of WS2/CoS2@CCF also display improved impedance matching. Furthermore, numerous W-S-Co bands and heterojunction interfaces of heterogeneous WS2/CoS2 are beneficial to promoting additional interfacial/dipole polarization loss and conductive loss, thereby enhancing the EMW attenuation performance. Based on the percolation theory, a good balance between impedance matching and EMW absorption capacity was achieved for the WS2/CoS2@CCF/paraffin composite with 20 wt.% filler loading, exhibiting strong EMW absorption capability with a minimum reflection loss (RLmin) value of −51.26 dB at 17.36 GHz with 2 mm thickness and a maximum effective absorption bandwidth (EABmax) as wide as 6.72 GHz. Our research will provide new guidance for designing high-efficient MOFs derived EMW absorbers.

Electronic Supplementary Material

Download File(s)
12274_2022_4533_MOESM1_ESM.pdf (960.2 KB)

References

1

Lu, X. K.; Zhu, D. M.; Li, X.; Li, M. H.; Chen, Q.; Qing, Y. C. Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2021, 4, 946–956.

2

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nanomicro Lett. 2022, 14, 89.

3

Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285.

4

Wu, N. N.; Du, W. J.; Hu, Q.; Vupputuri, S.; Jiang, Q. L. Recent development in fabrication of co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 2021, 13, 11–23.

5

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

6

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

7

Wang, Y. F.; Wang, P.; Du, Z. R.; Liu, C. T.; Shen, C. Y.; Wang, Y. M. Electromagnetic interference shielding enhancement of poly (lactic acid)-based carbonaceous nanocomposites by poly (ethylene oxide)-assisted segregated structure: A comparative study of carbon nanotubes and graphene nanoplatelets. Adv. Compos. Hybrid Mater. 2022, 5, 209–219.

8

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

9

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/Epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

10

Zhu, X. Y.; Qiu, H. F.; Chen, P.; Chen, G. Z.; Min, W. X. Graphitic carbon nitride (g-C3N4) in situ polymerization to synthesize MOF-Co@CNTs as efficient electromagnetic microwave absorption materials. Carbon 2021, 176, 530–539.

11

Wang, Y.; Di, X. C.; Lu, Z.; Cheng, R. R.; Wu, X. M.; Gao, P. H. Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 2022, 187, 404–414.

12

Guo, Y.; Wang, D. D.; Tian, Y.; Wang, J. W.; Bai, T. T.; Liu, H.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. FeCo alloy nanoparticle decorated cellulose based carbon aerogel as a low-cost and efficient electromagnetic microwave absorber. J. Mater. Chem. C 2022, 10, 126–134.

13

Cui, J.; Wang, X. H.; Huang, L.; Zhang, C. W.; Yuan, Y.; Li, Y. B. Environmentally friendly bark-derived Co-Doped porous carbon composites for microwave absorption. Carbon 2022, 187, 115–125.

14

Zhu, M.; Yan, X. X.; Xu, H. L.; Xu, Y. J.; Kong, L. Ultralight, compressible, and anisotropic MXene@Wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 2021, 182, 806–814.

15

Zhang, X.; Dong, Y. Y.; Pan, F.; Xiang, Z.; Zhu, X. J.; Lu, W. Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high-performance microwave absorbers. Carbon 2021, 177, 332–343.

16

Pan, F.; Liu, Z. C.; Deng, B. W.; Dong, Y. Y.; Zhu, X. J.; Huang, C.; Lu, W. Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 2021, 13, 43.

17

Wang, B. J.; Li, S. K.; Huang, F. Z.; Wang, S. P.; Zhang, H.; Liu, F. H.; Liu, Q. C. Construction of multiple electron transfer paths in 1D core-shell hetetrostructures with MXene as interlayer enabling efficient microwave absorption. Carbon 2022, 187, 56–66.

18

Xu, X. Q.; Ran, F. T.; Fan, Z. M.; Cheng, Z. J.; Xie, Z. M.; Lv, T.; Liu, Y. Y. Microstructural engineering of flexible and broadband microwave absorption films with hierarchical superstructures derived from bimetallic metal-organic framework. Carbon 2021, 178, 320–331.

19

Zhang, D. Q.; Wang, H. H.; Cheng, J. Y.; Han, C. Y.; Yang, X. Y.; Xu, J. Y.; Shan, G. G.; Zheng, G. P.; Cao, M. S. Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 2020, 528, 147052.

20

Wu, J.; Chen, T.; Zhu, C. Y.; Du, J. J.; Huang, L. S.; Yan, J.; Cai, D. M.; Guan, C.; Pan, C. X. Rational construction of a WS2/CoS2 heterostructure electrocatalyst for efficient hydrogen evolution at all pH values. ACS Sustainable Chem. Eng. 2020, 8, 4474–4480.

21

Guo, Y.; Wang, D. D.; Wang, J. W.; Tian, Y.; Liu, H.; Liu, C. T.; Shen, C. Y. Hierarchical HCF@NC/Co derived from hollow loofah fiber anchored with metal-organic frameworks for highly efficient microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 2038–2050.

22

Ren, C. T.; Jia, X.; Zhang, W.; Hou, D.; Xia, Z. Q.; Huang, D. S.; Hu, J.; Chen, S. P.; Gao, S. L. Hierarchical porous integrated Co1−xS/CoFe2O4@rGO nanoflowers fabricated via temperature-controlled in situ calcining sulfurization of multivariate CoFe-MOF-74@rGO for high-performance supercapacitor. Adv. Funct. Mater. 2020, 30, 2004519.

23

Zhou, X. F.; Yang, X. L.; Li, H. N.; Hedhili, M. N.; Huang, K. W.; Li, L. J.; Zhang, W. J. Symmetric synergy of hybrid CoS2-WS2 electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 15552–15558.

24

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

25

Liu, P. B.; Zhu, C. Y.; Gao, S.; Guan, C.; Huang, Y.; He, W. J. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 2020, 163, 348–359.

26

Wu, F.; Liu, Z. H.; Wang, J. Q.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 2021, 422, 130591.

27

Sun, L.; Shi, Z. C.; He, B. L.; Wang, H. L.; Liu, S.; Huang, M. H.; Shi, J.; Dastan, D.; Wang, H. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors. Adv. Funct. Mater. 2021, 31, 2100280.

28

Sun, S. B.; Shi, Z. C.; Sun, L.; Liang, L.; Dastan, D.; He, B. L.; Wang, H. L.; Huang, M. H.; Fan, R. H. Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer. ACS Appl. Mater. Interfaces 2021, 13, 27522–27532.

29

Wang, Z. H.; Yang, L. X.; Zhou, Y.; Xu, C.; Yan, M.; Wu, C. NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2021, 13, 16713–16721.

30

Wang, Y. P.; Zhong, W. X.; Zhang, S.; Zhang, X.; Zhu, C. L.; Zhang, X. L.; Zhang, X. T.; Chen, Y. J. Pearl necklace-like CoMn-based nanostructures derived from metal-organic frames for enhanced electromagnetic wave absorption. Carbon 2022, 188, 254–264.

31

Song, S. W.; Zhang, A. T.; Chen, L.; Jia, Q.; Zhou, C. L.; Liu, J. Q.; Wang, X. X. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption. Carbon 2021, 176, 279–289.

32

Tan, R. Y.; Zhou, J. T.; Yao, Z. J.; Wei, B.; Zu, J. Q.; Lin, H. Y.; Li, Z. Ferrero Rocher® chocolates-like FeCo/C microspheres with adjustable electromagnetic properties for effective microwave absorption. J. Alloys Compd. 2021, 857, 157568.

33

Guo, Y.; Wang, D. D.; Bai, T. T.; Liu, H.; Zheng, Y. J.; Liu, C. T.; Shen, C. Y. Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv. Compos. Hybrid Mater. 2021, 4, 602–613.

34

Wei, H. J.; Tian, Y.; Chen, Q.; Estevez, D.; Xu, P.; Peng, H. X.; Qin, F. X. Microwave absorption performance of 2D Iron-Quinoid MOF. Chem. Eng. J. 2021, 405, 126637.

35

Zhao, B.; Deng, J. S.; Zhang, R.; Liang, L. Y.; Fan, B. B.; Bai, Z. Y.; Shao, G.; Park, C. B. Recent advances on the electromagnetic wave absorption properties of Ni based materials. Eng. Sci. 2018, 3, 5–40.

36

Li, X.; Wang, Z. L.; Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Huang, C.; Cai, L.; Lu, W. Biconical prisms Ni@C composites derived from metal-organic frameworks with an enhanced electromagnetic wave absorption. Carbon 2021, 184, 115–126.

37

Bai, T. T.; Guo, Y.; Liu, H.; Song, G.; Zhang, D. B.; Wang, Y. M.; Mi, L. W.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J. Mater. Chem. C 2020, 8, 5191–5201.

38

Liang, X. H.; Wang, G. H.; Gu, W. H.; Ji, G. B. Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon 2021, 177, 97–106.

39

Qu, X. H.; Zhou, Y. L.; Li, X. Y.; Javid, M.; Huang, F. R.; Zhang, X. F.; Dong, X. L.; Zhang, Z. D. Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber. Inorg. Chem. Front. 2020, 7, 1148–1160.

40

Peng, C. L.; Zhang, Y. N.; Zhang, B. S. MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption. J. Alloys Compd. 2020, 826, 154203.

41

Huang, W. H.; Zhang, X. X.; Zhao, Y. N.; Zhang, J.; Liu, P. B. Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption. Carbon 2020, 167, 19–30.

42

Yan, J.; Huang, Y.; Zhang, Z.; Liu, X. D. Novel 3D microsheets contain cobalt particles and numerous interlaced carbon nanotubes for high-performance electromagnetic wave absorption. J. Alloys Compd. 2019, 785, 1206–1214.

43

Liu, L. L.; Wang, L.; Li, Q. Q.; Yu, X. F.; Shi, X. F.; Ding, J. J.; You, W. B.; Yang, L. T.; Zhang, Y. H.; Che, R. C. High-performance microwave absorption of MOF-derived core−shell Co@N-doped carbon anchored on reduced graphene oxide. ChemNanoMat 2019, 5, 558–565.

44

Li, N.; Huang, G. W.; Xiao, H. M.; Feng, Q. P.; Fu, S. Y. Investigations on structure-dependent microwave absorption performance of nano-Fe3O4 coated carbon-based absorbers. Carbon 2019, 144, 216–227.

45

Quan, B.; Xu, G. Y.; Yi, H.; Yang, Z. H.; Xiang, J. X.; Chen, Y. T.; Ji, G. B. Enhanced electromagnetic wave response of nickel nanoparticles encapsulated in nanoporous carbon. J. Alloys Compd. 2018, 769, 961–968.

46

Liao, Q.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Wang, B. B.; Yang, X. M.; Bu, X. H.; Wang, R. L. Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 2018, 34, 15854–15863.

Nano Research
Pages 6841-6850
Cite this article:
Guo Y, Liu H, Wang D, et al. Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Research, 2022, 15(8): 6841-6850. https://doi.org/10.1007/s12274-022-4533-x
Topics:
Part of a topical collection:

1073

Views

84

Crossref

82

Web of Science

88

Scopus

3

CSCD

Altmetrics

Received: 24 April 2022
Revised: 11 May 2022
Accepted: 14 May 2022
Published: 03 June 2022
© Tsinghua University Press 2022
Return