Journal Home > Volume 15 , Issue 10

Ni/Li exchange is a detrimental effect on electrochemical performances for high-Ni cathode materials (LiNixCoyMnzO2, x ≥ 0.6). Adjusting Li-excess degree has been proved to be an effective way to optimize Ni/Li exchange in the materials. However, until now, how the Ni/Li exchange and thus the structural properties is affected by the Li-excess has not been understood and clearly elucidated in the literature. Herein, a feasible strategy is utilized to optimize Ni/Li exchange and the amount of anti-Li+ in LiNi0.8Co0.1Mn0.1O2 by mixing Ni0.8Co0.1Mn0.1(OH)2 precursor with different amounts of lithium sources during lithiation. It was found that morphology and phase stability of the material can be tuned with moderate excessive lithium. With 10% Li-excess, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 211.5 mAh·g–1 at 0.1 C and maintains 93.3% of its initial capacity after 100 cycles at 1 C. Different technologies were used to characterize the materials and it shows that the formation of broader Li slab space, decreased anti-Ni2+ in Li layer, and gradient distribution of Ni3+ in the surface is contributed to moderate Li-excess in the materials. Broader Li slab space facilitates diffusion of Li+, decreased antisite-Ni2+ and gradient distribution of Ni3+ in materials surfaces optimizes the Ni/Li exchange. Based on these results, we thus believe that it is the moderate Li-excess in material that optimized the electrochemical performance of high-Ni cathode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tuning Li-excess to optimize Ni/Li exchange and improve stability of structure in LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries

Show Author's information Fangya Guo§Yongfan Xie§Youxiang Zhang( )
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

§ Fangya Guo and Yongfan Xie contributed equally to this work.

Abstract

Ni/Li exchange is a detrimental effect on electrochemical performances for high-Ni cathode materials (LiNixCoyMnzO2, x ≥ 0.6). Adjusting Li-excess degree has been proved to be an effective way to optimize Ni/Li exchange in the materials. However, until now, how the Ni/Li exchange and thus the structural properties is affected by the Li-excess has not been understood and clearly elucidated in the literature. Herein, a feasible strategy is utilized to optimize Ni/Li exchange and the amount of anti-Li+ in LiNi0.8Co0.1Mn0.1O2 by mixing Ni0.8Co0.1Mn0.1(OH)2 precursor with different amounts of lithium sources during lithiation. It was found that morphology and phase stability of the material can be tuned with moderate excessive lithium. With 10% Li-excess, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 211.5 mAh·g–1 at 0.1 C and maintains 93.3% of its initial capacity after 100 cycles at 1 C. Different technologies were used to characterize the materials and it shows that the formation of broader Li slab space, decreased anti-Ni2+ in Li layer, and gradient distribution of Ni3+ in the surface is contributed to moderate Li-excess in the materials. Broader Li slab space facilitates diffusion of Li+, decreased antisite-Ni2+ and gradient distribution of Ni3+ in materials surfaces optimizes the Ni/Li exchange. Based on these results, we thus believe that it is the moderate Li-excess in material that optimized the electrochemical performance of high-Ni cathode materials.

Keywords: cycling stability, structural stability, Ni-rich cathodes, Ni/Li exchange, Li-excess

References(54)

1
Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P.; Lu, W.; Amal, R.; Dai, L. M. Recent advances in flexible batteries: From materials to applications. Nano Res., in press, https://doi.org/10.1007/s12274-021-3820-2.
2

Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2021, 14, 2424–2431.

3

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

4

Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Co0.1Mn0.1O2 at high cut-off voltages through core–shell structuring. Nano Res. 2019, 12, 2460–2467.

5

Myung, S. T.; Maglia, F.; Park, K. J.; Yoon, C. S.; Lamp, P.; Kim, S. J.; Sun, Y. K. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Lett. 2017, 2, 196–223.

6

Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng. X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

7

Zheng, J. X.; Liu, T. C.; Hu, Z. X.; Wei, Y.; Song, X. H.; Ren, Y.; Wang, W. D.; Rao, M. M.; Lin, Y.; Chen, Z. H. et al. Tuning of thermal stability in layered Li (NixMnyCoz)O2. J. Am. Chem. Soc. 2016, 138, 13326–13334.

8

Su, Y. F.; Chen, G.; Chen, L.; Lu, Y.; Zhang, Q. Y.; Lv, Z.; Li, C.; Li, L. W.; Liu, N.; Tan, G. Q. et al. High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 36697–36704.

9

Wang, D. W.; Xin, C.; Zhang, M. J.; Bai, J. M.; Zheng, J. X.; Kou, R. H.; Ko, J. Y. P.; Huq, A.; Zhong, G. M.; Sun, C. J. et al. Intrinsic role of cationic substitution in tuning Li/Ni mixing in high-Ni layered oxides. Chem. Mater. 2019, 31, 2731–2740.

10

Wang, L. F.; Liu, G. Y.; Ding, X. N.; Zhan, C.; Wang, X. D. Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 33901–33912.

11

Li, J.; Zhang, M. L.; Zhang, D. Y.; Yan, Y. X.; Li, Z. M. An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem. Eng. J. 2020, 402, 126195.

12

Liu, W.; Oh, P.; Liu, X. E.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. , Int. Ed. 2015, 54, 4440–4457.

13

Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.

14

Wu, L. P.; Tang, X. C.; Chen, X.; Rong, Z. H.; Dang, W.; Wang, Y.; Li, X.; Huang, L. C.; Zhang, Y. Improvement of electrochemical reversibility of the Ni-rich cathode material by gallium doping. J. Power Sources 2020, 445, 227337.

15

Hou, P. Y.; Li, F.; Sun, Y. Y.; Li, H. Q.; Xu, X. J.; Zhai, T. Y. Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 24508–24515.

16

Liu, Y.; Tang, L. B.; Wei, H. X.; Zhang, X. H.; He, Z. J.; Li, Y. J.; Zheng, J. C. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 2019, 65, 104043.

17

Yan, P. F.; Nie, A. M.; Zheng, J. M.; Zhou, Y. G.; Lu, D. P.; Zhang, X. F.; Xu, R.; Belharouak, I.; Zu, X. T.; Xiao, J. et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium-ion batteries. Nano Lett. 2015, 15, 514–522.

18

Kim, J. H.; Kim, H.; Kim, W. J.; Kim, Y. C.; Jung, J. Y.; Rhee, D. Y.; Song, J. H.; Cho, W.; Park, M. S. Incorporation of titanium into Ni-rich layered cathode materials for lithium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 12204–12211.

19

Yu, H. J.; Qian, Y. M.; Otani, M.; Tang, D. M.; Guo, S. H.; Zhu, Y. B.; Zhou, H. S. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium-ion batteries: Experiment and first-principles calculations. Energy Environ. Sci. 2014, 7, 1068–1078.

20

Guo, F. Y.; Xie, Y. F.; Zhang, Y. X. Low-temperature strategy to synthesize single-crystal Li Ni0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Res. 2022, 15, 2052–2059.

21

Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Multishelled Ni-rich Li (NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-Ion batteries. Adv. Sci. 2017, 4, 1600262.

22

Zhang, J. D.; Wu, F. Z.; Dai, X. Y.; Mai, Y.; Gu, Y. J. Enhancing the high-voltage cycling performance and rate capability of LiNi0.8Co0.1Mn0.1O2 cathode material by Co-doping with Na and Br. ACS Sustainable Chem. Eng. 2021, 9, 1741–1753.

23

Yu, H. F.; Zhu, H. W.; Yang, Z. F.; Liu, M. M.; Jiang, H.; Li, C. Z. Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes. Chem. Eng. J. 2021, 412, 128625.

24

Sun, G.; Yin, X. C.; Yang, W.; Song, A. L.; Jia, C. X.; Yang, W.; Du, Q. H.; Ma, Z. P.; Shao, G. J. The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides. Phys. Chem. Chem. Phys. 2017, 19, 29886–29894.

25

Cui, J. X.; Ding, X. K.; Luo, D.; Xie, H. X.; Zhang, Z. H.; Zhang, B. Y.; Tan, F. L.; Liu, C. Y.; Lin, Z. Effect of cationic uniformity in precursors on Li/Ni mixing of Ni-rich layered cathodes. Energy Fuels 2021, 35, 1842–1850.

26

Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

27

Wang, T.; Ren, K. L.; Xiao, W.; Dong, W. H.; Qiao, H. L.; Duan, A. R.; Pan, H. Y.; Yang, Y.; Wang, H. L. Tuning the Li/Ni disorder of the NMC811 cathode by thermally driven competition between lattice ordering and structure decomposition. J. Phys. Chem. C 2020, 124, 5600–5607.

28

Zhang, C. C.; Liu, M. M.; Pan, G. J.; Liu, S. Y.; Liu, D.; Chen, C. G.; Su, J.; M.; Huang, T.; Yu, A. S. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries by precursor preoxidation. ACS Appl. Energy Mater. 2018, 1, 4374–4384.

29

Myung, S. T.; Komaba, S.; Kurihara, K.; Hosoya, K.; Kumagai, N.; Sun, Y. K.; Nakai, I.; Yonemura, M.; Kamiyama, T. Synthesis of Li [(Ni0.5Mn0.5)1–xLix] O2 by emulsion drying method and impact of excess Li on structural and electrochemical properties. Chem. Mater. 2006, 18, 1658–1666.

30

Zheng, J. X.; Ye, Y. K.; Liu, T. C.; Xiao, Y. G.; Wang, C. M.; Wang, F.; Pan, F. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control. Acc. Chem. Res. 2019, 52, 2201–2209.

31

Zhang, X. Y.; Jiang, W. J.; Mauger, A.; Qilu; Gendron, F.; Julien, C. M. Minimization of the cation mixing in Li1+x (NMC) 1–xO2 as cathode material. J. Power Sources 2010, 195, 1292–1301.

32

Yu, Z. L.; Qu, X. Y.; Wan, T.; Dou, A. C.; Zhou, Y.; Peng, X. Q.; Su, M. R.; Liu, Y. J.; Chu, D. W. Synthesis and mechanism of high structural stability of nickel-rich cathode materials by adjusting Li-excess. ACS Appl. Mater. Interfaces 2020, 12, 40393–40403.

33

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

34

Peng, S. Y.; Kong, X. B.; Li, J. Y.; Zeng, J.; Zhao, J. B. Alleviating the storage instability of LiNi0.8Co0.1Mn0.1O2 cathode materials by surface modification with poly (acrylic acid). ACS Sustainable Chem. Eng. 2021, 9, 7466–7478.

35

Kim, Y.; Kim, D.; Kang, S. Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides. Chem. Mater. 2011, 23, 5388–5397.

36

Duan, J. G.; Wu, C.; Cao, Y. B.; Huang, D. H.; Du, K.; Peng, Z, D.; Hu, G. R. Enhanced compacting density and cycling performance of Ni-riched electrode via building mono dispersed micron scaled morphology. J. Alloys Compd. 2017, 695, 91–99.

37

Kim, J.; Cho, H.; Jeong, H. Y.; Ma, H.; Lee, J.; Hwang, J.; Park, M.; Cho, J. Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1602559.

38

Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li [Ni0.6Co0.2Mn0.2] O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 5, 1464–1479.

39

Robert, R.; Bünzli, C.; Berg, E. J.; Novák, P. Activation mechanism of LiNi0.80Co0.15Al0.05O2: Surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses. Chem. Mater. 2015, 27, 526–536.

40

Seong, W. M.; Cho, K. H.; Prak, J. W.; Park, H.; Eum, D.; Lee, M. H.; Kim, I. S. S.; Lim, J.; Kang, K. Controlling residual lithium in high-nickel (> 90 %) lithium layered oxides for cathodes in lithium-ion batteries. Angew. Chem. , Int. Ed. 2020, 59, 18662–18669.

41

Meng, K.; Wang, Z. X.; Guo, H. J.; Li, X. H.; Wang, D. Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3. Electrochim. Acta 2016, 211, 822–831.

42

Zhang, M. L.; Shen, J. T.; Li, J.; Zhang, D. Y.; Yan, Y. X.; Huang, Y. X.; Li, Z. M. Effect of micron sized particle on the electrochemical properties of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode materials. Ceram. Int. 2020, 46, 4643–4651.

43

Hu, D. Z.; Chen, G.; Tian, J.; Li, N.; Chen, L.; Su, Y. F.; Song, T. L.; Lu, Y.; Cao, D. Y.; Chen, S. et al. Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries. J. Energ. Chem. 2021, 60, 104–110.

44

Wei, Y.; Zheng, J. X.; Cui, S. H.; Song, X. H.; Su, Y. T.; Deng, W. J.; Wu, Z. Z.; Wang, X. W.; Wang, W. D.; Rao, M. M. et al. Kinetics tuning of Li-ion diffusion in layered Li (NixMnyCoz)O2. J. Am. Chem. Soc. 2015, 137, 8364–8367.

45

Ma, X. T.; Vanaphuti, P.; Fu, J. Z.; Hou, J. H.; Liu, Y. T.; Zhang, R. H.; Bong, S.; Yao, Z. Y.; Yang, Z. Z.; Wang, Y. A universal etching method for synthesizing high-performance single crystal cathode materials. Nano Energy 2021, 87, 106194.

46

Chen, Z.; Wang, J.; Chao, D. L.; Baikie, T.; Bai, L. Y.; Chen, S.; Zhao, Y. L.; Sum, T. C.; Lin, J. Y.; Shen, Z. X. Hierarchical porous LiNi1/3Co1/3Mn1/3O2 nano-/micro spherical cathode material: Minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance. Sci. Rep. 2016, 6, 25771.

47

Meng, K.; Wang, Z. X.; Guo, H. J.; Li, X. H. Enhanced cycling stability of LiNi0.8Co0.1Mn0.1O2 by reducing surface oxygen defects. Electrochim. Acta 2017, 234, 99–107.

48

Xu, X.; Huo, H.; Jian, J. Y.; Wang, G. L.; Zhu, H.; Xu, S.; He, X. S.; Yin, G. P.; Du, C. Y.; Sun, X. L. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1803963.

49

Han, Y. K.; Heng, S.; Wang, Y.; Qu, Q. T.; Zheng, H. H. Anchoring interfacial nickel cations on single-crystal LiNi0.8Co0.1Mn0.1O2 cathode surface via controllable electron transfer. ACS Energy Lett. 2020, 5, 2421–2433.

50

Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.

51

Dong, M. X.; Wang, Z. X.; Li, H. K.; Guo, H. J.; Li, X. H.; Shih, K.; Wang, J. X. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustainable Chem. Eng. 2017, 5, 10199–10205.

52

Li, R.; Bai, C. J.; Liu, H.; Yang, L. W.; Ming, Y.; Xu, C. L.; Wei, Z.; Song, Y.; Wang, G. K.; Liu, Y. X. et al. New insights into the mechanism of enhanced performance of Li [Ni0.8Co0.1Mn0.1] O2 with a polyacrylic acid-modified binder. ACS Appl. Mater. Interfaces 2021, 13, 10064–10070.

53

Qu, X. Y.; Yu, Z. L.; Ruan, D. S.; Dou, A. C.; Su, M. R.; Zhou, Y.; Liu, Y. J.; Chu, D. W. Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.7Ti1.7(PO4)3 coating. ACS Sustainable Chem. Eng. 2020, 8, 5819–5830.

54

Feng, Z.; Rajagopalan, R.; Sun, D.; Tang, Y. G.; Wang, H. Y. In-situ formation of hybrid Li3PO4-AlPO4-Al (PO3)3 coating layer on LiNi0.8Co0. 1Mn0. 1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng. J. 2020, 382, 122959.

File
12274_2022_4532_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2022
Revised: 06 May 2022
Accepted: 14 May 2022
Published: 05 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21271145) and the Natural Science Foundation of Hubei Province (No. 2015CFB537) for the financial support for this investigation.

Return