Journal Home > Volume 15 , Issue 10

The morphology manipulation of nanomaterials by ion irradiation builds a way to precisely control physicochemical properties. Under the continuous irradiation of low energy Ga+, Ne+, and He+ ions, an ion compaction effect has been found in hollow FePt nanochains with ultrathin shell that the volumes of the nanochains are gradually compacted by ions. The deep learning algorithm has been successfully applied to automatically and precisely measure average sizes of spheres in hollow FePt nanochains. The compaction under ion irradiation is very fast in the very early period and then proceeds to a slow region. The compaction rates in both regions are linearly fitted and all the values are in the order of 10–17 to 10–14 cm2/ion. Ion species and ion current have effect on the compaction rate. For example, the compaction rate of Ga+ ions is larger than those of Ne+ and He+ ions under an identical current, while irradiation with larger current can compact nanochains faster. The ion compaction effect originates from the local shear deformation caused by the interaction between incident ions and the electrons of Fe and Pt atoms in the ultrathin shell. With continuous irradiation, the crystalline clusters of FePt nanchains firstly grow larger and then become amorphous. The ion compaction effect can be applied to tune the size and crystal structure of hollow structures with a precise rate by choosing appropriate ion species and current.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ion compaction effect in hollow FePt nanochains with ultrathin shell under low energy ion irradiation

Show Author's information Jialong Liu1( )Jianguo Wu2,3Long Cheng4Suyun Niu5Zhiqiang Wang6Mengyuan Zhu7Jingyan Zhang7Shouguo Wang7( )Wei Wang1( )
School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
Key Laboratory of Shale Gas and Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
School of Physics, Beihang University, Beijing 100029, China
Beijing Hangxing Machinery Manufacturing Co., Ltd., Beijing 100013, China
Beijing Smart-chip Microelectronics Technology Co., Ltd., Beijing 100192, China
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The morphology manipulation of nanomaterials by ion irradiation builds a way to precisely control physicochemical properties. Under the continuous irradiation of low energy Ga+, Ne+, and He+ ions, an ion compaction effect has been found in hollow FePt nanochains with ultrathin shell that the volumes of the nanochains are gradually compacted by ions. The deep learning algorithm has been successfully applied to automatically and precisely measure average sizes of spheres in hollow FePt nanochains. The compaction under ion irradiation is very fast in the very early period and then proceeds to a slow region. The compaction rates in both regions are linearly fitted and all the values are in the order of 10–17 to 10–14 cm2/ion. Ion species and ion current have effect on the compaction rate. For example, the compaction rate of Ga+ ions is larger than those of Ne+ and He+ ions under an identical current, while irradiation with larger current can compact nanochains faster. The ion compaction effect originates from the local shear deformation caused by the interaction between incident ions and the electrons of Fe and Pt atoms in the ultrathin shell. With continuous irradiation, the crystalline clusters of FePt nanchains firstly grow larger and then become amorphous. The ion compaction effect can be applied to tune the size and crystal structure of hollow structures with a precise rate by choosing appropriate ion species and current.

Keywords: ion irradiation, hollow structure, FePt, ion compaction effect

References(53)

1

Wang, X. N.; Wan, W. J.; Shen, S. H.; Wu, H. Y.; Zhong, H. Z.; Jiang, C. Z.; Ren, F. Application of ion beam technology in (photo)electrocatalytic materials for renewable energy. Appl. Phys. Rev. 2020, 7, 041303.

2

Kaur, M.; Gautam, S.; Goyal, N. Ion-implantation and photovoltaics efficiency: A review. Mater. Lett. 2022, 309, 131356.

3

Xiang, X. P.; He, Z. Y.; Rao, J. J.; Fan, Z.; Wang, X. W.; Chen, Y. Applications of ion beam irradiation in multifunctional oxide thin films: A review. ACS Appl. Electron. Mater. 2021, 3, 1031–1042.

4

Liu, Z.; Cui, A. J.; Li, J. J.; Gu, C. Z. Folding 2D structures into 3D configurations at the micro/nanoscale: Principles, techniques, and applications. Adv. Mater. 2019, 31, 1802211.

5

Juge, R.; Bairagi, K.; Rana, K. G.; Vogel, J.; Sall, M.; Mailly, D.; Pham, V. T.; Zhang, Q.; Sisodia, N.; Foerster, M. et al. Helium ions put magnetic skyrmions on the track. Nano Lett. 2021, 21, 2989–2996.

6

Xia, T. Y.; Luo, H.; Wang, S. G.; Liu, J. L.; Yu, G. H.; Wang, R. M. Large-scale synthesis of gold dendritic nanostructures for surface enhanced Raman scattering. CrystEngComm 2015, 17, 4200–4204.

7

Yang, S. Y.; Liu, Z.; Hu, S.; Jin, A. Z.; Yang, H. F.; Zhang, S.; Li, J. J.; Gu, C. Z. Spin-selective transmission in chiral folded metasurfaces. Nano Lett. 2019, 19, 3432–3439.

8

Rettner, C. T.; Anders, S.; Baglin, J. E. E.; Thomson, T.; Terris, B. D. Characterization of the magnetic modification of Co/Pt multilayer films by He+, Ar+, and Ga+ ion irradiation. Appl. Phys. Lett. 2002, 80, 279–281.

9

Aumayr, F.; Facsko, S.; El-Said, A. S.; Trautmann, C.; Schleberger, M. Single ion induced surface nanostructures: A comparison between slow highly charged and swift heavy ions. J. Phys.: Condens. Matter 2011, 23, 393001.

10

Fassbender, J.; McCord, J. Magnetic patterning by means of ion irradiation and implantation. J. Magn. Magn. Mater. 2008, 320, 579–596.

11

Allen, F. I. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein J. Nanotechnol. 2021, 12, 633–664.

12

Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

13

Tang, B.; Cui, B. Q.; Wang, L. M.; Ma, R. G.; Li, N.; Chen, L. H.; Cao, L. X.; Huang, Q. H.; Zhang, J.; Ran, G. et al. The development of a hydrogen-helium dual-beam ion implanter. Rev. Sci. Instrum. 2020, 91, 013309.

14

Thieberger, P.; Carlson, C.; Steski, D.; Ghandi, R.; Bolotnikov, A.; Lilienfeld, D.; Losee, P. Novel high-energy ion implantation facility using a 15 MV Tandem Van de Graaff. Nucl. Instrum. Methods Phys. Res. , Sect. B Beam Interact. Mater. Atoms 2019, 442, 36–40.

15

Petrov, Y. V.; Grigoryev, E. A.; Baraban, A. P. Helium focused ion beam irradiation with subsequent chemical etching for the fabrication of nanostructures. Nanotechnology 2020, 31, 215301.

16

Li, P.; Chen, S. Y.; Dai, H. F.; Yang, Z. M.; Chen, Z. M.; Wang, Y. S.; Chen, Y. Q.; Peng, W. Q.; Shan, W. B.; Duan, H. G. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 2021, 13, 1529–1565.

17

Klaumünzer, S.; Schumacher, G.; Rentzsch, S.; Vogl, G.; Söldner, L.; Bieger, H. Severe radiation-damage by heavy-ions in glassy Pd80Si20. Acta Metall. 1982, 30, 1493–1502.

18

Rizza, G. From ion-hammering to ion-shaping: An historical overview. J. Phys. Conf. Ser. 2015, 629, 012005.

19

Li, R.; Pang, C.; Li, Z. Q.; Chen, F. Plasmonic nanoparticles in dielectrics synthesized by ion beams: Optical properties and photonic applications. Adv. Opt. Mater. 2020, 8, 1902087.

20

Boltasseva, A.; Atwater, H. A. Low-loss plasmonic metamaterials. Science 2011, 331, 290–291.

21

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

22

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

23
Sigmund, P. Stopping of slow ions. In Particle Penetration and Radiation Effects Volume 2. Sigmund, P. , Eds. ; Springer: Cham, 2014; pp 343-415.
DOI
24

Arora, W. J.; Sijbrandij, S.; Stern, L.; Notte, J.; Smith, H. I.; Barbastathis, G. Membrane folding by helium ion implantation for three-dimensional device fabrication. J. Vac. Sci. Technol. B 2007, 25, 2184–2187.

25

Rajput, N. S.; Banerjee, A.; Verma, H. C. Electron- and ion-beam-induced maneuvering of nanostructures: Phenomenon and applications. Nanotechnology 2011, 22, 485302.

26

Rahman, F. H. M; McVey, S.; Farkas, L.; Notte, J. A.; Tan, S. D.; Livengood, R. H. The prospects of a subnanometer focused neon ion beam. Scanning 2012, 34, 129–134.

27

Wu, J. G.; Yuan, Y.; Niu, S. Y.; Wei, X. F.; Yang, J. J. Multiscale characterization of pore structure and connectivity of Wufeng-Longmaxi shale in Sichuan Basin, China. Mar. Petrol. Geol. 2020, 120, 104514.

28

Liu, J. L.; Niu, S. Y.; Li, G. L.; Du, Z. M.; Zhang, Y. X.; Yang, J. J. Reconstructing 3D digital model without distortion for poorly conductive porous rock by nanoprobe-assisted FIB-SEM tomography. J. Microsc. 2021, 282, 258–266.

29

Snoeks, E.; Van Blaaderen, A.; Van Dillen, T.; Van Kats, C. M.; Brongersma, M. L.; Polman, A. Colloidal ellipsoids with continuously variable shape. Adv. Mater. 2000, 12, 1511–1514.

DOI
30

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

31

Sun, Q.; Ren, Z.; Wang, R. M.; Wang, N.; Cao, X. Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell. J. Mater. Chem. 2011, 21, 1925–1930.

32

Liu, J. L.; Xia, T. Y.; Wang, S. G.; Yang, G.; Dong, B. W.; Wang, C.; Ma, Q. D.; Sun, Y. N.; Wang, R. M. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale 2016, 8, 11432–11440.

33

Liu, J. H.; Liu, X. W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097–4111.

34

Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 2012, 57, 724–803.

35

Sun, Q.; Liu, W.; Wang, R. M. Double-layered NiPt nanobowls with ultrathin shell synthesized in water at room temperature. CrystEngComm 2012, 14, 5151–5154.

36

Shen, X.; Sun, Q.; Zhu, J.; Yao, Y.; Liu, J.; Jin, C. Q.; Yu, R. C.; Wang, R. M. Structural stability and Raman scattering of CoPt and NiPt hollow nanospheres under high pressure. Prog. Nat. Sci. Mater. 2013, 23, 382–387.

37

Du, F. H.; Li, B.; Fu, W.; Xiong, Y. J.; Wang, K. X.; Chen, J. S. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. Adv. Mater. 2014, 26, 6145–6150.

38

Wang, D. L.; He, H.; Han, L. L.; Lin, R. Q.; Wang, J.; Wu, Z. X.; Liu, H. F.; Xin, H. L. L. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries. Nano Energy 2016, 20, 212–220.

39
Liu, J. L. ; Liu, W. ; Sun, Q. ; Wang, S. G. ; Sun, K. ; Schwank, J. ; Wang, R. M. In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of CO oxidation. Chem. Commun. 2014, 50, 1804–1807.
DOI
40

Liu, J. L.; Zhang, Y. X.; Xia, T. Y.; Zhang, Q. Q.; Wang, S. G.; Wang, R. M.; Yang, J. J. One-dimensional hollow FePt nanochains: Applications in hydrolysis of NaBH4 and structural stability under Ga+ ion irradiation. Nanotechnology 2020, 31, 185704.

41

McCulloch, D.; Hoffman, A.; Prawer, S. Ion-beam induced compaction in glassy carbon. J. Appl. Phys. 1993, 74, 135–138.

42

Raut, U.; Teolis, B. D.; Loeffler, M. J.; Vidal, R. A.; Famá, M.; Baragiola, R. A. Compaction of microporous amorphous solid water by ion irradiation. J. Chem. Phys. 2007, 126, 244511.

43

Das, K.; Freund, J. B.; Johnson, H. T. A FIB induced boiling mechanism for rapid nanopore formation. Nanotechnology 2014, 25, 035303.

44

Raineri, V.; Coffa, S.; Szilágyi, E.; Gyulai, J.; Rimini, E. He-vacancy interactions in Si and their influence on bubble formation and evolution. Phys. Rev. B 2000, 61, 937–945.

45

Li, R. R.; Zhu, R.; Chen, S. L.; He, C.; Li, M. Q.; Zhang, J. M.; Gao, P.; Liao, Z. M.; Xu, J. Study of damage generation induced by focused helium ion beam in silicon. J. Vac. Sci. Technol. B 2019, 37, 031804.

46

Oliviero, E.; Peripolli, S.; Amaral, L.; Fichtner, P. F. P.; Beaufort, M. F.; Barbot, J. F.; Donnelly, S. E. Damage accumulation in neon implanted silicon. J. Appl. Phys. 2006, 100, 043505.

47
Girshick, R. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp 1440–1448.
DOI
48

Ren, S. Q.; He, K. M.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149.

49

Hou, M. D.; Klaumünzer, S.; Schumacher, G. Dimensional changes of metallic glasses during bombardment with fast heavy ions. Phys. Rev. B 1990, 41, 1144–1157.

50

Liang, Y. X.; Sun, Y. J.; Wang, X. Y.; Fu, E. G.; Zhang, J.; Du, J. L.; Wen, X. D.; Guo, S. J. High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate. Nanoscale 2018, 10, 11357–11364.

51

Zhang, Q. Q.; Liu, J. L.; Xia, T. Y.; Qi, J.; Lyu, H. C.; Luo, B. Y.; Wang, R. M.; Guo, Y. Z.; Wang, L. H.; Wang, S. G. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells. Nano Res. 2019, 12, 2520–2527.

52
Zhu, M. Y. ; Wang, Y. ; Wu, Y. F. ; Liu, J. L. ; Zhang, J. Y. ; Huang H. ; Zheng X. Q. ; Shen J. X. ; Zhao, R. J. ; Zhou, W. D. et al. Greatly enhanced methanol oxidation reaction of CoPt truncated octahedral nanoparticles by external magnetic fields. Energy Environ. Mater. , in press,https://doi.org/10.1002/eem2.12403.
DOI
53

Yu, Y. N.; Zhai, M. M.; Hu, J. B. Electrocatalytic oxidation of ethanol and ethylene glycol on bimetallic Ni and Ti nanoparticle-modified indium tin oxide electrode in alkaline solution. Prog. Nat. Sci. Mater. Int. 2019, 29, 511–516.

File
12274_2022_4531_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2022
Revised: 27 April 2022
Accepted: 11 May 2022
Published: 27 June 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52071009, 52130103, 51701202, and 12011530067) and the Fundamental Research Funds for the Central Universities (No. ZY2211). We thank Dr. Zhu Rui from the Electron Microscopy Laboratory of Peking University for the use of helium ion microscope. We also thank Tang Xu and Gu Lixin from the Electron Microscopy Laboratory, Institute of Geology and Geophysics, CAS for the assistance of focused ion beam and transmission electron microscope.

Return