Journal Home > Volume 15 , Issue 10

The synthesis of Pt-based nanoparticles (NPs) with ultrasmall feature and tailored structure is of great importance for catalysis yet challenging. In this work, we demonstrate a facile top–down strategy for the fabrication of small-sized Pt-based intermetallic compounds (IMCs) with L10 structure through the evaporation of Cd under high temperature. Impressively, such thermal treatment can be used as a versatile strategy for creating binary, ternary, quaternary, quinary, and senary L10-Pt-based IMCs. Moreover, the small-sized Pt-based IMCs display high stability against high temperature of 700 °C, which can serve as active and selective catalyst for the selective hydrogenation of 4-nitrophenylacetylene. This work may not only provide a versatile top–down strategy for fabricating highly stable small-sized Pt-based NPs with L10 structure, but also promote their extensive applications in catalysis and beyond.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A top–down strategy to realize the synthesis of small-sized L10-platinum-based intermetallic compounds for selective hydrogenation

Show Author's information Yu Jin1,§Guomian Ren2,§Yonggang Feng3Shize Geng3Ling Li1Xing Zhu4Jun Guo4Qi Shao1Yong Xu2( )Xiaoqing Huang3( )Jianmei Lu1( )
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Testing & Analysis Center, Soochow University, Suzhou 215123, China

§ Yu Jin and Guomian Ren contributed equally to this work.

Abstract

The synthesis of Pt-based nanoparticles (NPs) with ultrasmall feature and tailored structure is of great importance for catalysis yet challenging. In this work, we demonstrate a facile top–down strategy for the fabrication of small-sized Pt-based intermetallic compounds (IMCs) with L10 structure through the evaporation of Cd under high temperature. Impressively, such thermal treatment can be used as a versatile strategy for creating binary, ternary, quaternary, quinary, and senary L10-Pt-based IMCs. Moreover, the small-sized Pt-based IMCs display high stability against high temperature of 700 °C, which can serve as active and selective catalyst for the selective hydrogenation of 4-nitrophenylacetylene. This work may not only provide a versatile top–down strategy for fabricating highly stable small-sized Pt-based NPs with L10 structure, but also promote their extensive applications in catalysis and beyond.

Keywords: selective hydrogenation, top–down strategy, Pt-based, intermetallic compound, small-sized

References(35)

1

Ryoo, R.; Kim, J.; Jo, C.; Han, S. W.; Kim, J. C.; Park, H.; Han, J.; Shin, H. S.; Shin, J. W. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 2020, 585, 221–224.

2

Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

3

Bai, L. C.; Wang, X.; Chen, Q.; Ye, Y. F.; Zheng, H. Q.; Guo, J. H.; Yin, Y. D.; Gao, C. B. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew. Chem., Int. Ed. 2016, 55, 15656–15661.

4

Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H. X.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472–1478.

5

Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

6

Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.

7

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

8

Zhang, B. T.; Fu, G. T.; Li, Y. T.; Liang, L. C.; Grundish, N. S.; Tang, Y. W.; Goodenough, J. B.; Cui, Z. M. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size. Angew. Chem., Int. Ed. 2020, 59, 7857–7863.

9

Yoo, T. Y.; Yoo, J. M.; Sinha, A. K.; Bootharaju, M. S.; Jung, E.; Lee, H. S.; Lee, B. H.; Kim, J.; Antink, W. H.; Kim, Y. M. et al. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis. J. Am. Chem. Soc. 2020, 142, 14190–14200.

10

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

11

Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. M. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

12

Prinz, J.; Gaspari, R.; Pignedoli, C. A.; Vogt, J.; Gille, P.; Armbrüster, M.; Brune, H.; Gröning, O.; Passerone, D.; Widmer, R. Isolated Pd sites on the intermetallic PdGa (111) and PdGa ( 111¯) model catalyst surfaces. Angew. Chem., Int. Ed. 2012, 51, 9339–9343.

13

Li, J. R.; Sun, S. H. Intermetallic nanoparticles: Synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 2019, 52, 2015–2025.

14

Wang, J.; Zhang, J.; Liu, G. G.; Ling, C. Y.; Chen, B.; Huang, J. T.; Liu, X. Z.; Li, B.; Wang, A. L.; Hu, Z. N. et al. Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Res. 2020, 13, 1970–1975.

15

Li, J. R.; Sun, S. H. Intermetallic nanoparticles: Synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 2019, 52, 2015–2025.

16

Hu, Y. Z.; Lu, Y.; Zhao, X. R.; Shen, T.; Zhao, T. H.; Gong, M. X.; Chen, K.; Lai, C. L.; Zhang, J.; Xin, H. L. et al. Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. 2020, 13, 2365–2370.

17

Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.

18

Guan, J. Y.; Yang, S. X.; Liu, T. T.; Yu, Y. H.; Niu, J.; Zhang, Z. P.; Wang, F. Intermetallic FePt@PtBi core–shell nanoparticles for oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21899–21904.

19

Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

20

Jin, Y.; Wang, P. T.; Mao, X. N.; Liu, S. H.; Li, L. G.; Wang, L.; Shao, Q.; Xu, Y.; Huang, X. Q. A top–down strategy to realize surface reconstruction of small-sized platinum-based nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2021, 60, 17430–17434.

21

Han, A. J.; Zhang, J.; Sun, W. M.; Chen, W. X.; Zhang, S. L.; Han, Y. H.; Feng, Q. C.; Zheng, L. R.; Gu, L.; Chen, C. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 2019, 10, 3787.

22

Wang, Q. M.; Chen, S. G.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W. et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale Kirkendall effect. Adv. Mater. 2016, 28, 10673–10678.

23

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

24

Zhao, T.; Luo, E. G.; Li, Y.; Wang, X.; Liu, C. P.; Xing, W.; Ge, J. J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Sci. China Mater. 2021, 64, 1671–1678.

25

Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

26

Ostrom, C. K.; Chen, A. C. Synthesis and electrochemical study of Pd-based trimetallic nanoparticles for enhanced hydrogen storage. J. Phys. Chem. C 2013, 117, 20456–20464.

27

Li, T. Y.; Dong, Q.; Huang, Z. N.; Wu, L. P.; Yao, Y. G.; Gao, J. L.; Wang, X. Z.; Zhang, H. C.; Wang, D. W.; Li, T. et al. Interface engineering between multi-elemental alloy nanoparticles and a carbon support toward stable catalysts. Adv. Mater. 2022, 34, 2106436.

28

Komatsu, T.; Takasaki, M.; Ozawa, K.; Furukawa, S.; Muramatsu, A. PtCu intermetallic compound supported on alumina active for preferential oxidation of CO in hydrogen. J. Phys. Chem. C 2013, 117, 10483–10491.

29

Feng, Y. G.; Xu, W. W.; Huang, B. L.; Shao, Q.; Xu, L.; Yang, S. Z.; Huang, X. Q. On-demand, ultraselective hydrogenation system enabled by precisely modulated Pd-Cd nanocubes. J. Am. Chem. Soc. 2020, 142, 962–972.

30

Yun, Q. B.; Lu, Q. P.; Li, C. L.; Chen, B.; Zhang, Q. H.; He, Q. Y.; Hu, Z. N.; Zhang, Z. C.; Ge, Y. Y.; Yang, N. L. et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano 2019, 13, 14329–14336.

31

Wu, B. H.; Huang, H. Q.; Yang, J.; Zheng, N. F.; Fu, G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem., Int. Ed. 2012, 51, 3440–3443.

32

Long, Y.; Li, J.; Wu, L. L.; Wang, Q. S.; Liu, Y.; Wang, X.; Song, S. Y.; Zhang, H. J. Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. Nano Res. 2019, 12, 869–875.

33

Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971–11975.

34

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.

35

Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.

File
12274_2022_4530_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 April 2022
Revised: 10 May 2022
Accepted: 11 May 2022
Published: 15 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the financial supports by the National Key Research and Development (R&D) Program of China (No. 2020YFB1505802), the Ministry of Science and Technology of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22025108, U21A20327, 22121001, and 51802206), Guangdong Provincial Natural Science Fund for Distinguished Young Scholars (No. 2021B1515020081), and start-up supports from Xiamen University and Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices (No. 20195010002).

Return