AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15−xNx as a visible-light-responsive photocatalyst for water oxidation

Shiwen Du1Hai Zou1,2Yunfeng Bao1Yu Qi1Xueshang Xin1,2Shuowen Wang1Zhaochi Feng1Fuxiang Zhang1( )
State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Novel homogeneous nitrogen-doped (111)-type layered perovskite oxynitride (Sr5Nb4O15−xNx) is directly synthesized using a thermal ammonolysis method, which exhibits an enhanced photocatalytic oxygen (O2) evolution activity from water splitting under visible-light illumination (λ > 420 nm) after loading with cobalt oxide (CoOx) as cocatalyst.

Abstract

The development of visible-light-responsive photocatalysts for promoting solar-driven oxygen (O2) production from water splitting is a potentially attractive but still a challenging scheme. In the present work, a (111)-type layered perovskite oxynitride, Sr5Nb4O15−xNx, was synthesized via the nitridation treatment of the disk-like oxide precursor under the ammonia flow, which was fabricated using a flux method. The homogeneous dispersion of nitrogen (N) dopant in N-doped Sr5Nb4O15 was ascertained by energy-dispersive X-ray spectroscopy characterization, and the Sr5Nb4O15−xNx was found to be a direct semiconductor with a light absorption edge of approximately 640 nm. Density functional theory investigation implies that the hybridization between the outmost N 2p orbitals and O 2p orbitals upshifts the original valence band maximum of Sr5Nb4O15 and endows its visible-light-responsive characteristics. Loading with cobalt oxide (CoOx) as cocatalyst, the as-prepared Sr5Nb4O15−xNx exhibited an enhanced photocatalytic O2 evolution activity from water splitting under visible-light illumination (λ > 420 nm). Moreover, another homogeneous N-doped layered perovskite-type niobium (Nb)-based oxynitride, Ba5Nb4O15−xNx, was also developed and investigated for the visible-light-actuated O2 production, highlighting the versatility of the present approach for exploring novel visible-light-responsive photocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4529_MOESM1_ESM.pdf (2.2 MB)

References

[1]

Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399.

[2]

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

[3]

Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

[4]

Chen, D.; Ye, J. H. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chem. Mater. 2009, 21, 2327–2333.

[5]

Nakamura, A.; Tomita, O.; Higashi, M.; Hosokawa, S.; Tanaka, T.; Abe, R. Solvothermal synthesis of Ca2Nb2O7 fine particles and their high activity for photocatalytic water splitting into H2 and O2 under UV light irradiation. Chem. Lett. 2015, 44, 1001–1003.

[6]
ZhangY. F.YuanJ.GongH. H.CaoY.LiuK. W.CaoH. W.YanH. J.ZhuJ. G. (00l)-Facet-exposed planelike ABi2Nb2O9 (A = Ca, Sr, Ba) powders with a single-crystal grain for enhancement of photocatalytic activityACS Sustainable Chem. Eng.201863840385210.1021/acssuschemeng.7b04181

Zhang, Y. F.; Yuan, J.; Gong, H. H.; Cao, Y.; Liu, K. W.; Cao, H. W.; Yan, H. J.; Zhu, J. G. (00l)-Facet-exposed planelike ABi2Nb2O9 (A = Ca, Sr, Ba) powders with a single-crystal grain for enhancement of photocatalytic activity. ACS Sustainable Chem. Eng. 2018, 6, 3840–3852.

[7]

Matsumoto, Y.; Koinuma, M.; Iwanaga, Y.; Sato, T.; Ida, S. N doping of oxide nanosheets. J. Am. Chem. Soc. 2009, 131, 6644–6645.

[8]

Zhou, Y. N.; Wen, T.; Kong, W. Q.; Yang, B. C.; Wang, Y. G. The impact of nitrogen doping and reduced-niobium self-doping on the photocatalytic activity of ultra-thin Nb3O8- nanosheets. Dalton Trans. 2017, 46, 13854–13861.

[9]
LiuC.FengY.HanZ. T.SunY.WangX. Q.ZhangQ. F.ZouZ. G. Z-scheme N-doped K4Nb6O17/g-C3N4 heterojunction with superior visible-light-driven photocatalytic activity for organic pollutant removal and hydrogen productionChin. J. Catal.20214216417410.1016/S1872-2067(20)63608-7

Liu, C.; Feng, Y.; Han, Z. T.; Sun, Y.; Wang, X. Q.; Zhang, Q. F.; Zou, Z. G. Z-scheme N-doped K4Nb6O17/g-C3N4 heterojunction with superior visible-light-driven photocatalytic activity for organic pollutant removal and hydrogen production. Chin. J. Catal. 2021, 42, 164–174.

[10]

Wu, F. F.; Lv, M. L.; Sun, X. Q.; Xie, Y. H.; Chen, H. M.; Ni, S.; Liu, G.; Xu, X. X. Efficient photocatalytic oxygen production over nitrogen-doped Sr4Nb2O9 under visible-light irradiation. ChemCatChem 2016, 8, 615–623.

[11]

Ji, S. M.; Borse, P. H.; Kim, H. G.; Hwang, D. W.; Jang, J. S.; Bae, S. W.; Lee, J. S. Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: Effects of catalyst structure. Phys. Chem. Chem. Phys. 2005, 7, 1315–1321.

[12]

Bao, Y. F.; Du, S. W.; Qi, Y.; Li, G.; Zhang, P.; Shao, G. S.; Zhang, F. X. Synthesis of a visible-light-responsive perovskite SmTiO2N bifunctional photocatalyst via an evaporation-assisted layered-precursor strategy. Adv. Mater. 2021, 33, 2101883.

[13]

Ida, S.; Okamoto, Y.; Matsuka, M.; Hagiwara, H.; Ishihara, T. Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10−xNy, and their photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 15773–15782.

[14]

Sun, X. Q.; Mi, Y. L.; Jiao, F.; Xu, X. X. Activating layered perovskite compound Sr2TiO4 via La/N codoping for visible light photocatalytic water splitting. ACS Catal. 2018, 8, 3209–3221.

[15]

Suzuki, H.; Tomita, O.; Higashi, M.; Abe, R. Design of nitrogen-doped layered tantalates for non-sacrificial and selective hydrogen evolution from water under visible light. J. Mater. Chem. A 2016, 4, 14444–14452.

[16]

Xu, X. X.; Wang, R.; Sun, X. Q.; Lv, M. L.; Ni, S. Layered perovskite compound NaLaTiO4 modified by nitrogen doping as a visible light active photocatalyst for water splitting. ACS Catal. 2020, 10, 9889–9898.

[17]

Miseki, Y.; Kato, H.; Kudo, A. Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ. Sci. 2009, 2, 306–314.

[18]

Yamada, T.; Murata, Y.; Wagata, H.; Yubuta, K.; Teshima, K. Facile morphological modification of Ba5Nb4O15 crystals using chloride flux and in situ growth investigation. Cryst. Growth Des. 2016, 16, 3954–3960.

[19]

Kodera, M.; Moriya, Y.; Katayama, M.; Hisatomi, T.; Minegishi, T.; Domen, K. Investigation on nitridation processes of Sr2Nb2O7 and SrNbO3 to SrNbO2N for photoelectrochemical water splitting. Sci. Rep. 2018, 8, 15849.

[20]

Seo, J.; Moriya, Y.; Kodera, M.; Hisatomi, T.; Minegishi, T.; Katayama, M.; Domen, K. Photoelectrochemical water splitting on particulate ANbO2N (A = Ba, Sr) photoanodes prepared from perovskite-type ANbO3. Chem. Mater. 2016, 28, 6869–6876.

[21]

Seo, J.; Nishiyama, H.; Yamada, T.; Domen, K. Visible-light-responsive photoanodes for highly active, stable water oxidation. Angew. Chem., Int. Ed. 2018, 57, 8396–8415.

[22]

Hisatomi, T.; Katayama, C.; Moriya, Y.; Minegishi, T.; Katayama, M.; Nishiyama, H.; Yamada, T.; Domen, K. Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy Environ. Sci. 2013, 6, 3595–3599.

[23]

Wang, X.; Hisatomi, T.; Liang, J. W.; Wang, Z.; Xiang, Y. J.; Zhao, Y. H.; Dai, X. Y.; Takata, T.; Domen, K. Facet engineering of LaNbON2 transformed from LaKNaNbO5 for enhanced photocatalytic O2 evolution. J. Mater. Chem. A 2020, 8, 11743–11751.

[24]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[25]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[26]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[27]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[28]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[29]

Oka, D.; Hirose, Y.; Kaneko, M.; Nakao, S.; Fukumura, T.; Yamashita, K.; Hasegawa, T. Anion-substitution-induced nonrigid variation of band structure in SrNbO3−xNx (0 ≤ x ≤ 1) epitaxial thin films. ACS Appl. Mater. Interfaces 2018, 10, 35008–35015.

[30]

Vargas, B.; Ramos, E.; Pérez-Gutiérrez, E.; Alonso, J. C.; Solis-Ibarra, D. A direct bandgap copper-antimony halide perovskite. J. Am. Chem. Soc. 2017, 139, 9116–9119.

[31]

Chen, S. S.; Yang, J. X.; Ding, C. M.; Li, R. G.; Jin, S. Q.; Wang, D. E.; Han, H. X.; Zhang, F. X.; Li, C. Nitrogen-doped layered oxide Sr5Ta4O15−xNx for water reduction and oxidation under visible light irradiation. J. Mater. Chem. A 2013, 1, 5651–5659.

[32]

Bouri, M.; Aschauer, U. Suitability of different Sr2TaO3N surface orientations for photocatalytic water oxidation. Chem. Mater. 2020, 32, 75–84.

[33]

Zeng, J. Y.; Wang, X. S.; Xie, B. R.; Li, Q. R.; Zhang, X. Z. Large π-conjugated metal-organic frameworks for infrared-light-driven CO2 reduction. J. Am. Chem. Soc. 2022, 144, 1218–1231.

[34]

Li, Q. D.; Chen, Y.; Du, F.; Cui, X. L.; Dai, L. M. Bias-free synthesis of hydrogen peroxide from photo-driven oxygen reduction reaction using N-doped γ-graphyne catalyst. Appl. Catal. B: Environ. 2022, 304, 120959.

[35]

Raziq, F.; Aligayev, A.; Shen, H. H.; Ali, S.; Shah, R.; Ali, S.; Bakhtiar, S. H.; Ali, A.; Zarshad, N.; Zada, A. et al. Exceptional photocatalytic activities of rGO modified (B, N) co-doped WO3, coupled with CdSe QDs for one photon Z-scheme system: A joint experimental and DFT study. Adv. Sci. 2022, 9, 2102530.

[36]

Zhang, J. F.; Wageh, S.; Al-Ghamdi, A.; Yu, J. G. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl. Catal. B: Environ. 2016, 192, 101–107.

[37]

Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv. Mater. 2016, 28, 4059–4064.

[38]

Jin, Y.; Li, F.; Li, T.; Xing, X. C.; Fan, W. H.; Zhang, L. L.; Hu, C. Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Appl. Catal. B: Environ. 2022, 302, 120824.

[39]

Zhou, M. Z.; Liu, J. P.; Ye, Y. J.; Sun, X.; Chen, H. J.; Zhou, D.; Yin, Y. M.; Zhang, N.; Ling, Y. H.; Ciucci, F. et al. Enhancing the intrinsic activity and stability of perovskite cobaltite at elevated temperature through surface stress. Small 2021, 17, 2104144.

[40]

Kawashima, K.; Hojamberdiev, M.; Mabayoje, O.; Wygant, B. R.; Yubuta, K.; Mullins, C. B.; Domen, K.; Teshima, K. NH3-assisted chloride flux-coating method for direct fabrication of visible-light-responsive SrNbO2N crystal layers. CrystEngComm 2017, 19, 5532–5541.

[41]

Dong, B. B.; Cui, J. Y.; Qi, Y.; Zhang, F. X. Nanostructure engineering and modulation of (oxy)nitrides for application in visible-light-driven water splitting. Adv. Mater. 2021, 33, 2004697.

[42]

Hao, L. X.; Yang, Y. L.; Huan, Y.; Cheng, H. B.; Zhao, Y. Y.; Wang, Y. Y.; Yan, J.; Ren, W.; Ouyang, J. Achieving a high dielectric tunability in strain-engineered tetragonal K0.5Na0.5NbO3 films. npj Comput. Mater. 2021, 7, 62.

[43]

Wang, X. H.; Lejus, A. M.; Vivien, D. Oxidation behavior of lanthanide aluminum oxynitrides with magnetoplumbite-like structure. J. Am. Ceram. Soc. 1990, 73, 770–774.

[44]

Chen, S. S.; Shen, S.; Liu, G. J.; Qi, Y.; Zhang, F. X.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem., Int. Ed. 2015, 54, 3047–3051.

[45]

Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 2003, 78, 555–560.

[46]

Zhang, F. X.; Yamakata, A.; Maeda, K.; Moriya, Y.; Takata, T.; Kubota, J.; Teshima, K.; Oishi, S.; Domen, K. Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J. Am. Chem. Soc. 2012, 134, 8348–8351.

[47]

Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.

[48]

Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. Well-controlled SrTiO3@Mo2C core–shell nanofiber photocatalyst: Boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 2018, 47, 463–473.

[49]

Chauhan, H.; Kumar, Y.; Dana, J.; Satpati, B.; Ghosh, H. N.; Deka, S. Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS-Au hybrid nanoplatelets and corresponding application in photocatalysis. Nanoscale 2016, 8, 15802–15812.

[50]

Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. J. Mater. Chem. A 2017, 5, 10591–10598.

[51]

Nasir, M. S.; Yang, G. R.; Ayub, I.; Wang, S. L.; Yan, W. Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 270, 118900.

Nano Research
Pages 9976-9984
Cite this article:
Du S, Zou H, Bao Y, et al. Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15−xNx as a visible-light-responsive photocatalyst for water oxidation. Nano Research, 2022, 15(12): 9976-9984. https://doi.org/10.1007/s12274-022-4529-6
Topics:
Part of a topical collection:

1156

Views

9

Crossref

11

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 08 April 2022
Revised: 11 May 2022
Accepted: 11 May 2022
Published: 14 June 2022
© Tsinghua University Press 2022
Return