Journal Home > Volume 16 , Issue 3

Sulfide solid electrolyte (SE) is one of the most promising technologies for all-solid-state batteries (ASSBs) because of its high ionic conductivity and ductile mechanical properties. In order to further improve the energy density of sulfide-based ASSBs and promote practical applications, silicon anodes with ultrahigh theoretical capacity (4,200 mAh·g−1) and rich resource abundance have broad commercial prospects. However, significant challenges including bulk instability of sulfide SEs and poor utilization of silicon materials have severely impeded the ASSBs from becoming viable. In this review, we first introduce the critical bulk properties of sulfide SEs and the most recent improving strategies covering the ionic conductivity, air stability, electrochemical window, mechanical stability, thermostability and solvent stability. Next, we introduce the main factors affecting the compatibility of silicon and sulfide SE, including the carbon’s effect, particle size of silicon, external pressure, silicon composite matrix and the depth of silicon’s lithiation. Finally, we discuss possible research directions in the future. We hope that this review can provide a comprehensive picture of the role of nanoscale approaches in recent advances in ASSBs with sulfide and silicon, as well as a source of inspiration for future research.


menu
Abstract
Full text
Outline
About this article

Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: A review

Show Author's information Xinyang Wang1,2Kuang He3Siyuan Li1,2Jiahui Zhang1,2Yingying Lu1,2( )
State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
Zhejiang Yongtai Technology Co., Ltd., Taizhou 317000, China

Abstract

Sulfide solid electrolyte (SE) is one of the most promising technologies for all-solid-state batteries (ASSBs) because of its high ionic conductivity and ductile mechanical properties. In order to further improve the energy density of sulfide-based ASSBs and promote practical applications, silicon anodes with ultrahigh theoretical capacity (4,200 mAh·g−1) and rich resource abundance have broad commercial prospects. However, significant challenges including bulk instability of sulfide SEs and poor utilization of silicon materials have severely impeded the ASSBs from becoming viable. In this review, we first introduce the critical bulk properties of sulfide SEs and the most recent improving strategies covering the ionic conductivity, air stability, electrochemical window, mechanical stability, thermostability and solvent stability. Next, we introduce the main factors affecting the compatibility of silicon and sulfide SE, including the carbon’s effect, particle size of silicon, external pressure, silicon composite matrix and the depth of silicon’s lithiation. Finally, we discuss possible research directions in the future. We hope that this review can provide a comprehensive picture of the role of nanoscale approaches in recent advances in ASSBs with sulfide and silicon, as well as a source of inspiration for future research.

Keywords: silicon anode, all-solid-state battery, sulfide solid electrolyte, nanoscale optimization

References(170)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Wang, X.; Wang, X. Y.; Lu, Y. Y. Realizing high voltage lithium cobalt oxide in lithium-ion batteries. Ind. Eng. Chem. Res. 2019, 58, 10119–10139.

[3]

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

[4]

Zhang, S.; Li, S. Y.; Lu, Y. Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience 2021, 1, 163–177.

[5]

Zhang, P.; Lai, X. Q.; Shen, J. R.; Zhang, D. H.; Yan, Y. H.; Zhang, R.; Sheng, J.; Dai, K. W. Research and industrialization progress of solid-state lithium battery. Energy Storage Sci. Technol. 2021, 10, 896–904.

[6]
Zhou, Z. H. ; Sun, T. ; Cui, J. ; Shen, X. ; Shi, C. ; Cao, S. ; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. in press, http://doi.org/10.1007/s12274-021-3683-6.
[7]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[8]

Liang, F.; Sun, Y. L.; Yuan, Y. F.; Huang, J.; Hou, M. J.; Lu, J. Designing inorganic electrolytes for solid-state Li-ion batteries: A perspective of LGPS and garnet. Mater. Today 2021, 50, 418–441.

[9]

Wang, R.; Zhang, X. J.; Cai, Y. C.; Nian, Q. S.; Tao, Z. L.; Chen, J. Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Res. 2019, 12, 2543–2548.

[10]

Webb, M. A.; Jung, Y.; Pesko, D. M.; Savoie, B. M.; Yamamoto, U.; Coates, G. W.; Balsara, N. P.; Wang, Z. G.; Miller, T. F. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci. 2015, 1, 198–205.

[11]

Liang, J. W.; Li, X. N.; Wang, S.; Adair, K. R.; Li, W. H.; Zhao, Y.; Wang, C. H.; Hu, Y. F.; Zhang, L.; Zhao, S. Q. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 2020, 142, 7012–7022.

[12]

Wang, C. H.; Liang, J. W.; Jiang, M.; Li, X. N.; Mukherjee, S.; Adair, K.; Zheng, M.; Zhao, Y.; Zhao, F. P.; Zhang, S. M. et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 2020, 76, 105015.

[13]

Zhang, X.; Zhang, L. C.; Zhang, W. X.; Ren, Z. H.; Huang, Z. G.; Hu, J. J.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Nano-synergy enables highly reversible storage of 9.2 wt.% hydrogen at mild conditions with lithium borohydride. Nano Energy 2021, 83, 105839.

[14]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, e2000751.

[15]

Kim, K. J.; Rupp, J. L. M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries. Energy Environ. Sci. 2020, 13, 4930–4945.

[16]

Cao, D. X.; Zhao, Y. Y.; Sun, X.; Natan, A.; Wang, Y.; Xiang, P. Y.; Wang, W.; Zhu, H. L. Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid-state Li metal batteries and beyond. ACS Energy Lett. 2020, 5, 3468–3489.

[17]

Liu, D. H.; Bai, Z. Y.; Li, M.; Yu, A.; Luo, D.; Liu, W. W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. W. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chem. Soc. Rev. 2020, 49, 5407–5445.

[18]

Chae, S.; Xu, Y. B.; Yi, R.; Lim, H. S.; Velickovic, D.; Li, X. L.; Li, Q. Y.; Wang, C. M.; Zhang, J. G. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Adv. Mater. 2021, 33, 2103095.

[19]

Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 110–135.

[20]

Cao, C. T.; Abate, I. I.; Sivonxay, E.; Shyam, B.; Jia, C. J.; Moritz, B.; Devereaux, T. P.; Persson, K. A.; Steinrück, H. G.; Toney, M. F. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 2019, 3, 762–781.

[21]

Eshetu, G. G.; Figgemeier, E. Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: Role of designer electrolyte additives and polymeric binders. ChemSusChem 2019, 12, 2515–2539.

[22]

Liu, L. L.; Xu, J. R.; Wang, S.; Wu, F.; Li, H.; Chen, L. Q. Practical evaluation of energy densities for sulfide solid-state batteries. eTransportation 2019, 1, 100010.

[23]

Tan, D. H. S.; Chen, Y. T.; Yang, H. D.; Bao, W.; Sreenarayanan, B.; Doux, J. M.; Li, W. K.; Lu, B. Y.; Ham, S. Y.; Sayahpour, B. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499.

[24]

Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011, 182, 116–119.

[25]

Kanno, R.; Murayama, M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 2001, 148, A742.

[26]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[27]

Oh, K.; Chang, D.; Lee, B.; Kim, D. H.; Yoon, G.; Park, I.; Kim, B.; Kang, K. Native defects in Li10GeP2S12 and their effect on lithium diffusion. Chem. Mater. 2018, 30, 4995–5004.

[28]

Rangasamy, E.; Liu, Z. C.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. D. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 2015, 137, 1384–1387.

[29]

Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem., Int. Ed. 2019, 58, 8681–8686.

[30]

Dietrich, C.; Weber, D. A.; Sedlmaier, S. J.; Indris, S.; Culver, S. P.; Walter, D.; Janek, J.; Zeier, W. G. Lithium ion conductivity in Li2S-P2S5 glasses-building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 2017, 5, 18111–18119.

[31]

Ujiie, S.; Hayashi, A.; Tatsumisago, M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes. Solid State Ionics 2012, 211, 42–45.

[32]

Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 2011, 182, 53–58.

[33]

Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7, 627–631.

[34]

Boulineau, S.; Courty, M.; Tarascon, J. M.; Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X= Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1–5.

[35]

Bron, P.; Johansson, S.; Zick, K.; auf der Günne, J. S.; Dehnen, S.; Roling, B. Li10SnP2S12: An affordable lithium superionic conductor. J. Am. Chem. Soc. 2013, 135, 15694–15697.

[36]

Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

[37]

Wang, C. H.; Liang, J. W.; Zhao, Y.; Zheng, M.; Li, X. N.; Sun, X. L. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14, 2577–2619.

[38]

Hayashi, A.; Hama, S.; Morimoto, H.; Tatsumisago, M.; Minami, T. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 2001, 84, 477–479.

[39]

Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, Highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918–921.

[40]

Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem., Int. Ed. 2008, 47, 755–758.

[41]

Jung, W. D.; Kim, J. S.; Choi, S.; Kim, S.; Jeon, M.; Jung, H. G.; Chung, K. Y.; Lee, J. H.; Kim, B. K.; Lee, J. H. et al. Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett. 2020, 20, 2303–2309.

[42]

Choi, Y. S.; Lee, J. C. Electronic and mechanistic origins of the superionic conductivity of sulfide-based solid electrolytes. J. Power Sources 2019, 415, 189–196.

[43]

Lin, Z.; Liu, Z. C.; Fu, W. J.; Dudney, N. J.; Liang, C. D. Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2013, 52, 7460–7463.

[44]

Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y. F.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 1026–1031.

[45]

Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. L. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, 1901131.

[46]

Yu, T.; Ke, B. Y.; Li, H. Y.; Guo, S. H.; Zhou, H. S. Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries. Mater. Chem. Front. 2021, 5, 4892–4911.

[47]

Wang, X. L.; Xiao, R. J.; Li, H.; Chen, L. Q. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte. Phys. Chem. Chem. Phys. 2016, 18, 21269–21277.

[48]

Ooura, Y.; Machida, N.; Naito, M.; Shigematsu, T. Electrochemical properties of the amorphous solid electrolytes in the system Li2S-Al2S3-P2S5. Solid State Ionics 2012, 225, 350–353.

[49]

Lee, Y.; Jeong, J.; Lee, H. J.; Kim, M.; Han, D.; Kim, H.; Yuk, J. M.; Nam, K. W.; Chung, K. Y.; Jung, H. G. et al. Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries. ACS Energy Lett. 2021, 7, 171–179.

[50]

Iwasaki, R.; Hori, S.; Kanno, R.; Yajima, T.; Hirai, D.; Kato, Y.; Hiroi, Z. Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12. Chem. Mater. 2019, 31, 3694–3699.

[51]

Hood, Z. D.; Wang, H.; Li, Y. C.; Pandian, A. S.; Parans Paranthaman, M.; Liang, C. D. The “filler effect”: A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes. Solid State Ionics 2015, 283, 75–80.

[52]

Zhao, F. P.; Liang, J. W.; Yu, C.; Sun, Q.; Li, X. N.; Adair, K.; Wang, C. H.; Zhao, Y.; Zhang, S. M.; Li, W. H. et al. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv. Energy Mater. 2020, 10, 1903422.

[53]

Lee, J.; Lee, T.; Char, K.; Kim, K. J.; Choi, J. W. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 2021, 54, 3390–3402.

[54]

Kimura, T.; Kato, A.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ionics 2019, 333, 45–49.

[55]

Liang, J. W.; Chen, N.; Li, X. N.; Li, X.; Adair, K. R.; Li, J. J.; Wang, C. H.; Yu, C.; Norouzi Banis, M.; Zhang, L. et al. Li10Ge(P1−xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability. Chem. Mater. 2020, 32, 2664–2672.

[56]

Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. J. Mater. Chem. A 2013, 1, 6320–6326.

[57]

Liu, G. Z.; Xie, D. J.; Wang, X. L.; Yao, X. Y.; Chen, S. J.; Xiao, R. J.; Li, H.; Xu, X. X. High air-stability and superior lithium ion conduction of Li3+3xP1−xZnxS4−xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater. 2019, 17, 266–274.

[58]

Zhu, Y. Z.; Mo, Y. F. Materials design principles for air-stable lithium/sodium solid electrolytes. Angew. Chem., Int. Ed. 2020, 59, 17472–17476.

[59]

Kaib, T.; Haddadpour, S. M.; Kapitein, M.; Bron, P.; Schröder, C.; Eckert, H.; Roling, B.; Dehnen, S. New lithium chalcogenidotetrelates, LiChT: Synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4. Chem. Mater. 2012, 24, 2211–2219.

[60]

Schnell, J.; Knörzer, H.; Imbsweiler, A. J.; Reinhart, G. Solid versus liquid-A bottom-up calculation model to analyze the manufacturing cost of future high-energy batteries. Energy Technol. 2020, 8, 1901237.

[61]

Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J. Alloys Compd. 2014, 591, 247–250.

[62]

Jung, W. D.; Jeon, M.; Shin, S. S.; Kim, J. S.; Jung, H. G.; Kim, B. K.; Lee, J. H.; Chung, Y. C.; Kim, H. Functionalized sulfide solid electrolyte with air-stable and chemical-resistant oxysulfide nanolayer for all-solid-state batteries. ACS Omega 2020, 5, 26015–26022.

[63]

Li, J.; Chen, H. W.; Shen, Y. B.; Hu, C. J.; Cheng, Z. J.; Lu, W.; Qiu, Y. J.; Chen, L. W. Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater. 2019, 23, 277–283.

[64]

Tan, D. H. S.; Banerjee, A.; Deng, Z.; Wu, E. A.; Nguyen, H.; Doux, J. M.; Wang, X. F.; Cheng, J. H.; Ong, S. P.; Meng, Y. S. et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process. ACS Appl. Energy Mater. 2019, 2, 6542–6550.

[65]

Kim, J. S.; Jeon, M.; Kim, S.; Lee, J. H.; Kim, B. K.; Kim, H. Structural and electronic descriptors for atmospheric instability of Li-thiophosphate using density functional theory. Solid State Ionics 2020, 346, 115225.

[66]

Xu, J. R.; Li, Y. X.; Lu, P. S.; Yan, W. L.; Yang, M.; Li, H.; Chen, L. Q.; Wu, F. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer. Adv. Energy Mater. 2021, 12, 2102348.

[67]

Lu, P. S.; Liu, L. L.; Wang, S.; Xu, J. R.; Peng, J.; Yan, W. L.; Wang, Q. C.; Li, H.; Chen, L. Q.; Wu, F. Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity. Adv. Mater. 2021, 33, 2100921.

[68]

Wang, X. Y.; Li, S. Y.; Zhang, W. D.; Wang, D.; Shen, Z. Y.; Zheng, J. P.; Zhuang, H. L.; He, Y.; Lu, Y. Y. Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability. Nano Energy 2021, 89, 106353.

[69]

Wang, X. Y.; Chen, M.; Li, S. Y.; Zhao, C.; Zhang, W. D.; Shen, Z. Y.; He, Y.; Feng, G.; Lu, Y. Y. Inhibiting dendrite growth via regulating the electrified interface for fast-charging lithium metal anode. ACS Cent. Sci. 2021, 7, 2029–2038.

[70]

Wang, L. G.; Dai, A.; Xu, W. Q.; Lee, S.; Cha, W.; Harder, R.; Liu, T. C.; Ren, Y.; Yin, G. P.; Zuo, P. J. et al. Structural distortion induced by manganese activation in a lithium-rich layered cathode. J. Am. Chem. Soc. 2020, 142, 14966–14973.

[71]

Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 2019, 4, 187–196.

[72]

Zhang, Z. H.; Chen, S. J.; Yang, J.; Wang, J. Y.; Yao, L. L.; Yao, X. Y.; Cui, P.; Xu, X. X. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 2018, 10, 2556–2565.

[73]

Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, e2002741.

[74]

Cheng, T.; Merinov, B. V.; Morozov, S.; Goddard, W. A. Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface. ACS Energy Lett. 2017, 2, 1454–1459.

[75]

Jiang, W.; Yan, L. J.; Zeng, X. M.; Meng, X. J.; Huang, R. Z.; Zhu, X. X.; Ling, M.; Liang, C. D. Adhesive sulfide solid electrolyte interface for lithium metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 54876–54883.

[76]

Han, F. D.; Zhu, Y. Z.; He, X. F.; Mo, Y. F.; Wang, C. S. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.

[77]

Zhu, Y. Z.; He, X. F.; Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693.

[78]

Schwietert, T. K.; Arszelewska, V. A.; Wang, C.; Yu, C.; Vasileiadis, A.; De Klerk, N. J. J.; Hageman, J.; Hupfer, T.; Kerkamm, I.; Xu, Y. L. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 2020, 19, 428–435.

[79]

Zhang, Z. X.; Zhang, L.; Yan, X. L.; Wang, H. Q.; Liu, Y. Y.; Yu, C.; Cao, X. T.; Van Eijck, L.; Wen, B. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J. Power Sources 2019, 410–411, 162–170.

[80]

Hori, S.; Suzuki, K.; Hirayama, M.; Kato, Y.; Kanno, R. Lithium superionic conductor Li9.42Si1.02P2.1S9.96O2.04 with Li10GeP2S12-type structure in the Li2S-P2S5-SiO2 pseudoternary system: Synthesis, electrochemical properties, and structure-composition relationships. Front. Energy Res. 2016, 4, 38.

[81]

Zhou, P. F.; Wang, J. B.; Cheng, F. Y.; Li, F. J.; Chen, J. A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. Chem. Commun. 2016, 52, 6091–6094.

[82]

Wu, F.; Fitzhugh, W.; Ye, L. H.; Ning, J. X.; Li, X. Advanced sulfide solid electrolyte by core−shell structural design. Nat. Commun. 2018, 9, 4037.

[83]

Meng, X. B.; Meng, X. B. An overview of molecular layer deposition for organic and organic-inorganic hybrid materials: Mechanisms, growth characteristics, and promising applications. J. Mater. Chem. A 2017, 5, 18326–18378.

[84]

Meng, X. B. Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: Opportunities and challenges. Energy Storage Mater. 2020, 30, 296–328.

[85]

Haruyama, J.; Sodeyama, K.; Han, L. Y.; Takada, K.; Tateyama, Y. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 2014, 26, 4248–4255.

[86]

Liu, G. Z.; Lu, Y.; Wan, H. L.; Weng, W.; Cai, L. T.; Li, Z.; Que, X. C.; Liu, H. J.; Yao, X. Y. Passivation of the cathode-electrolyte interface for 5 V-class all-solid-state batteries. ACS Appl. Mater. Interfaces 2020, 12, 28083–28090.

[87]

Oh, G.; Hirayama, M.; Kwon, O.; Suzuki, K.; Kanno, R. Bulk-type all solid-state batteries with 5 V Class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem. Mater. 2016, 28, 2634–2640.

[88]

Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 2020, 5, 299–308.

[89]

Zhang, W. B.; Schröder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. (Electro)chemical expansion during cycling: Monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 2017, 5, 9929–9936.

[90]

Li, Y.; Zhang, D. C.; Xu, X. J.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Liu, J.; Zhu, M. Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. J. Energy Chem. 2021, 60, 32–60.

[91]

Kato, A.; Yamamoto, M.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Appl. Energy Mater. 2018, 1, 1002–1007.

[92]

Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 2016, 28, 197–206.

[93]

Sakuda, A.; Hayashi, A.; Takigawa, Y.; Higashi, K.; Tatsumisago, M. Evaluation of elastic modulus of Li2S-P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. J. Ceram. Soc. Jpn. 2013, 121, 946–949.

[94]

Zhang, W. D.; Fan, L.; Tong, Z. M.; Miao, J. Z.; Shen, Z. Y.; Li, S. Y.; Chen, F.; Qiu, Y. C.; Lu, Y. Y. Stable Li-metal deposition via a 3D nanodiamond matrix with ultrahigh Young’s modulus. Small Methods 2019, 3, 1900325.

[95]

Koerver, R.; Zhang, W. B.; De Biasi, L.; Schweidler, S.; Kondrakov, A. O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W. G.; Janek, J. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 2018, 11, 2142–2158.

[96]

Shin, B. R.; Nam, Y. J.; Oh, D. Y.; Kim, D. H.; Kim, J. W.; Jung, Y. S. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 2014, 146, 395–402.

[97]

Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 2013, 3, 2261.

[98]

Cho, J.; Kim, G.; Lim, H.; Liu, M. L. Electrochemical properties of GeS2-based glass-polymer composite electrolytes for lithium-Ion batteries. J. Electrochem. Soc. 1998, 145, 1949–1952.

[99]

Whiteley, J. M.; Taynton, P.; Zhang, W.; Lee, S. H. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater. 2015, 27, 6922–6927.

[100]

Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett. 2015, 15, 3317–3323.

[101]

Wang, C. H.; Yu, R. Z.; Duan, H.; Lu, Q. W.; Li, Q. Z.; Adair, K. R.; Bao, D. N.; Liu, Y.; Yang, R.; Wang, J. T. et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Lett. 2021, 7, 410–416.

[102]

Weber, D. A.; Senyshyn, A.; Weldert, K. S.; Wenzel, S.; Zhang, W. B.; Kaiser, R.; Berendts, S.; Janek, J.; Zeier, W. G. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12. Chem. Mater. 2016, 28, 5905–5915.

[103]

Hood, Z. D.; Kates, C.; Kirkham, M.; Adhikari, S.; Liang, C. D.; Holzwarth, N. A. W. Structural and electrolyte properties of Li4P2S6. Solid State Ionics 2016, 284, 61–70.

[104]

Garcia-Mendez, R.; Mizuno, F.; Zhang, R. G.; Arthur, T. S.; Sakamoto, J. Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior. Electrochim. Acta 2017, 237, 144–151.

[105]

Kaup, K.; Zhou, L. D.; Huq, A.; Nazar, L. F. Impact of the Li substructure on the diffusion pathways in alpha and beta Li3PS4: An in situ high temperature neutron diffraction study. J. Mater. Chem. A 2020, 8, 12446–12456.

[106]

Minami, K.; Mizuno, F.; Hayashi, A.; Tatsumisago, M. Structure and properties of the 70Li2S·(30−x)P2S5·xP2O5 oxysulfide glasses and glass-ceramics. J. Non-Cryst. Solids 2008, 354, 370–373.

[107]
Tatsumisago, M.; Hama, S.; Hayashi, A.; Morimoto, H.; Minami, T. New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S-P2S5 glasses. Solid State Ionics 2002, 154–155, 635–640.
DOI
[108]

Hayashi, A.; Hama, S.; Minami, T.; Tatsumisago, M. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses. Electrochem. Commun. 2003, 5, 111–114.

[109]

Miura, A.; Rosero-Navarro, N. C.; Sakuda, A.; Tadanaga, K.; Phuc, N. H. H.; Matsuda, A.; Machida, N.; Hayashi, A.; Tatsumisago, M. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 2019, 3, 189–198.

[110]

Wang, H.; Hood, Z. D.; Xia, Y. N.; Liang, C. D. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J. Mater. Chem. A 2016, 4, 8091–8096.

[111]

Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. Preparation of sulfide solid electrolytes in the Li2S-P2S5 system by a liquid phase process. Inorg. Chem. Front. 2018, 5, 501–508.

[112]

Hood, Z. D.; Wang, H.; Pandian, A. S.; Peng, R.; Gilroy, K. D.; Chi, M. F.; Liang, C. D.; Xia, Y. N. Fabrication of sub-micrometer-thick solid electrolyte membranes of β-Li3PS4 via tiled assembly of nanoscale, plate-like building blocks. Adv. Energy Mater. 2018, 8, 1800014.

[113]

Phuc, N. H. H.; Totani, M.; Morikawa, K.; Muto, H.; Matsuda, A. Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ionics 2016, 288, 240–243.

[114]

Phuc, N. H. H.; Yamamoto, T.; Muto, H.; Matsuda, A. Fast synthesis of Li2S-P2S5-LiI solid electrolyte precursors. Inorg. Chem. Front. 2017, 4, 1660–1664.

[115]

Phuc, N. H. H.; Morikawa, K.; Totani, M.; Muto, H.; Matsuda, A. Chemical synthesis of Li3PS4 precursor suspension by liquid-phase shaking. Solid State Ionics 2016, 285, 2–5.

[116]

Ito, S.; Nakakita, M.; Aihara, Y.; Uehara, T.; Machida, N. A synthesis of crystalline Li7P3S11 solid electrolyte from 1, 2-dimethoxyethane solvent. J. Power Sources 2014, 271, 342–345.

[117]

Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y. Z.; Mo, Y. F.; Jung, Y. S. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 2018, 8, 1800035.

[118]

Liu, Z. C.; Fu, W. J.; Payzant, E. A.; Yu, X.; Wu, Z. L.; Dudney, N. J.; Kiggans, J.; Hong, K. L.; Rondinone, A. J.; Liang, C. D. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 2013, 135, 975–978.

[119]

Wu, L. P.; Liu, G. Z.; Wan, H. L.; Weng, W.; Yao, X. Y. Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. J. Power Sources 2021, 491, 229565.

[120]

Lee, J. E.; Park, K. H.; Kim, J. C.; Wi, T. U.; Ha, A. R.; Song, Y. B.; Oh, D. Y.; Woo, J.; Kweon, S. H.; Yeom, S. J. et al. Universal solution synthesis of sulfide solid electrolytes using alkahest for all-solid-state batteries. Adv. Mater. 2022, 34, 2200083.

[121]

Wang, X. Y.; Zhang, W. D.; Wang, D.; Zhuang, H. L.; Li, S. Y.; Fan, L.; Li, L. L.; Wang, X.; He, Y.; Lu, Y. Y. Ionic liquid-reinforced carbon nanofiber matrix enabled lean-electrolyte Li-S batteries via electrostatic attraction. Energy Storage Mater. 2020, 26, 378–384.

[122]

Wu, C. S.; Lou, J. T.; Zhang, J.; Chen, Z. Y.; Kakar, A.; Emley, B.; Ai, Q.; Guo, H.; Liang, Y. L.; Lou, J. et al. Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy 2021, 87, 106081.

[123]

Zhu, X. X.; Jiang, W.; Zhao, S.; Huang, R. Z.; Ling, M.; Liang, C. D.; Wang, L. G. Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries. Nano Energy 2022, 96, 107093.

[124]

Jiang, W.; Zhu, X. X.; Huang, R. Z.; Zhao, S.; Fan, X. M.; Ling, M.; Liang, C. D.; Wang, L. G. Revealing the design principles of Ni-rich cathodes for all-solid-state batteries. Adv. Energy Mater. 2022, 12, 2103473.

[125]
Cao, D. X. ; Sun, X. ; Li, Y. J. ; Anderson, A. ; Lu, W. Q. ; Zhu, H. L. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes. Adv. Mater., in press, https://doi.org/10.1002/adma.202200401.
DOI
[126]

Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35–53.

[127]

Cai, W. L.; Yao, Y. X.; Zhu, G. L.; Yan, C.; Jiang, L. L.; He, C. X.; Huang, J. Q.; Zhang, Q. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 2020, 49, 3806–3833.

[128]

Ferrese, A.; Newman, J. Mechanical deformation of a lithium-metal anode due to a very stiff separator. J. Electrochem. Soc. 2014, 161, A1350–A1359.

[129]

Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396.

[130]

Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z. Y.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 2019, 18, 1105–1111.

[131]

Wan, H. L.; Zhang, J. X.; Xia, J. L.; Ji, X.; He, X. Z.; Liu, S. F.; Wang, C. S. F and N rich solid electrolyte for stable all-solid-state battery. Adv. Funct. Mater. 2022, 32, 2110876.

[132]

Lin, Z.; Liu, T. X.; Ai, X. P.; Liang, C. D. Aligning academia and industry for unified battery performance metrics. Nat. Commun. 2018, 9, 5262.

[133]

Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.

[134]

Tian, Y.; An, Y. L.; Wei, C. L.; Jiang, H. Y.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 2020, 78, 105344.

[135]

Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 2019, 4, 683–689.

[136]

Pan, H.; Cheng, Z.; He, P.; Zhou, H. S. A review of solid-state lithium-sulfur battery: Ion transport and polysulfide chemistry. Energy Fuels 2020, 34, 11942–11961.

[137]

Yao, X. Y.; Huang, N.; Han, F. D.; Zhang, Q.; Wan, H. L.; Mwizerwa, J. P.; Wang, C. S.; Xu, X. X. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 2017, 7, 1602923.

[138]

Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X. F.; Wu, E. A.; Jo, C.; Yang, H. D.; Meng, Y. S. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 2020, 10, 1903253.

[139]

Hopcroft, M. A.; Nix, W. D.; Kenny, T. W. What is the Young’s modulus of silicon. J. Microelectromech. Syst. 2010, 19, 229–238.

[140]

Obrovac, M. N.; Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 2007, 154, A103.

[141]

Yan, W. L.; Wu, F.; Li, H.; Chen, L. Q. Application of Si-based anodes in sulfide solid-state batteries. Energy Storage Sci. Technol. 2021, 10, 821–835.

[142]

Lee, J.; Moon, J.; Han, S. A.; Kim, J.; Malgras, V.; Heo, Y. U.; Kim, H.; Lee, S. M.; Liu, H. K.; Dou, S. X. et al. Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano 2019, 13, 9607–9619.

[143]

Tao, W.; Wang, P.; You, Y.; Park, K.; Wang, C. Y.; Li, Y. K.; Cao, F. F.; Xin, S. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res. 2019, 12, 1739–1749.

[144]

Yamamoto, M.; Terauchi, Y.; Sakuda, A.; Takahashi, M. Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability. J. Power Sources 2018, 402, 506–512.

[145]

Yamamoto, M.; Terauchi, Y.; Sakuda, A.; Takahashi, M. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci. Rep. 2018, 8, 1212.

[146]

Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J. G.; Choi, N. S.; Jung, Y. S. Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. J. Mater. Chem. A 2017, 5, 20771–20779.

[147]

Trevey, J.; Jang, J. S.; Jung, Y. S.; Stoldt, C. R.; Lee, S. H. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries. Electrochem. Commun. 2009, 11, 1830–1833.

[148]

Dunlap, N. A.; Kim, J.; Guthery, H.; Jiang, C. S.; Morrissey, I.; Stoldt, C. R.; Oh, K. H.; Al-Jassim, M.; Lee, S. H. Towards the commercialization of the all-solid-state Li-ion battery: Local bonding structure and the reversibility of sheet-style Si-PAN anodes. J. Electrochem. Soc. 2020, 167, 060522.

[149]

Dunlap, N. A.; Kim, S.; Jeong, J. J.; Oh, K. H.; Lee, S. H. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries. Solid State Ionics 2018, 324, 207–217.

[150]

Trevey, J. E.; Rason, K. W.; Stoldt, C. R.; Lee, S. H. Improved performance of all-solid-state lithium-ion batteries using nanosilicon active material with multiwalled-carbon-nanotubes as a conductive additive. Electrochem. Solid-State Lett. 2010, 13, A154.

[151]

Piper, D. M.; Yersak, T. A.; Lee, S. H. Effect of compressive stress on electrochemical performance of silicon anodes. J. Electrochem. Soc. 2013, 160, A77–A81.

[152]

Yamamoto, M.; Terauchi, Y.; Sakuda, A.; Kato, A.; Takahashi, M. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries. J. Power Sources 2020, 473, 228595.

[153]

Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X. F.; Yang, H. D.; Banerjee, A.; Meng, Y. S. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 2019, 4, 2418–2427.

[154]

Kim, J. Y.; Jung, S.; Kang, S. H.; Park, J.; Lee, M. J.; Jin, D.; Shin, D. O.; Lee, Y. G.; Lee, Y. M. Graphite-silicon diffusion-dependent electrode with short effective diffusion length for high-performance all-solid-state batteries. Adv. Energy Mater. 2021, 12, 2103108.

[155]

Park, S. W.; Oh, G.; Park, J. W.; Ha, Y. C.; Lee, S. M.; Yoon, S. Y.; Kim, B. G. Graphitic hollow nanocarbon as a promising conducting agent for solid-state lithium batteries. Small 2019, 15, 1900235.

[156]

Okuno, R.; Yamamoto, M.; Kato, A.; Takahashi, M. Stable cyclability caused by hghly dispersed nanoporous Si composite anodes with sulfide-based solid electrolyte. J. Electrochem. Soc. 2020, 167, 140522.

[157]

Zhu, G. J.; Chao, D. L.; Xu, W. L.; Wu, M. H.; Zhang, H. J. Microscale silicon-based anodes: Fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 2021, 15, 15567–15593.

[158]

Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

[159]

An, W. L.; Gao, B.; Mei, S. X.; Xiang, B.; Fu, J. J.; Wang, L.; Zhang, Q. B.; Chu, P. K.; Huo, K. F. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447.

[160]

Li, G.; Huang, L. B.; Yan, M. Y.; Li, J. Y.; Jiang, K. C.; Yin, Y. X.; Xin, S.; Xu, Q.; Guo, Y. G. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy 2020, 74, 104890.

[161]

Zhang, Y.; Zhang, R.; Chen, S. C.; Gao, H. P.; Li, M. Q.; Song, X. L.; Xin, H. L.; Chen, Z. Diatomite-derived hierarchical porous crystalline-amorphous network for high-performance and sustainable Si anodes. Adv. Funct. Mater. 2020, 30, 2005956.

[162]

Chae, S.; Ko, M.; Park, S.; Kim, N.; Ma, J.; Cho, J. Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries. Energy Environ. Sci. 2016, 9, 1251–1257.

[163]

Kim, D. H.; Lee, H. A.; Song, Y. B.; Park, J. W.; Lee, S. M.; Jung, Y. S. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. J. Power Sources 2019, 426, 143–150.

[164]

Yersak, T. A.; Son, S. B.; Cho, J. S.; Suh, S. S.; Kim, Y. U.; Moon, J. T.; Oh, K. H.; Lee, S. H. An all-solid-state Li-ion battery with a pre-lithiated Si-Ti-Ni alloy anode. J. Electrochem. Soc. 2013, 160, A1497–A1501.

[165]

Whiteley, J. M.; Kim, J. W.; Piper, D. M.; Lee, S. H. High-capacity and highly reversible silicon-tin hybrid anode for solid-state lithium-ion batteries. J. Electrochem. Soc. 2015, 163, A251–A254.

[166]

Yersak, T. A.; Shin, J.; Wang, Z.; Estrada, D.; Whiteley, J.; Lee, S. H.; Sailor, M. J.; Meng, Y. S. Preparation of mesoporous Si@PAN electrodes for Li-Ion batteries via the in-situ polymerization of PAN. ECS Electrochem. Lett. 2015, 4, A33–A36.

[167]

Kim, J.; Kim, C.; Jang, I.; Park, J.; Kim, J.; Paik, U.; Song, T. Si nanoparticles embedded in carbon nanofiber sheathed with Li6PS5Cl as an anode material for all-solid-state batteries. J. Power Sources 2021, 510, 230425.

[168]

Nam, Y. J.; Park, K. H.; Oh, D. Y.; An, W. H.; Jung, Y. S. Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells. J. Mater. Chem. A 2018, 6, 14867–14875.

[169]

Poetke, S.; Hippauf, F.; Baasner, A.; Dörfler, S.; Althues, H.; Kaskel, S. Nanostructured Si-C composites as high-capacity anode material for all-solid-state lithium-ion batteries. Batteries Supercaps 2021, 4, 1323–1334.

[170]

Chen, Z.; Zhang, L.; Wu, X. K.; Song, K. F.; Ren, B. Z.; Li, T.; Zhang, S. J. Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2||SiOx/graphite lithium-ion batteries. J. Power Sources 2019, 439, 227056.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 March 2022
Revised: 06 May 2022
Accepted: 11 May 2022
Published: 26 July 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0209600), the National Natural Science Foundation of China (Nos. 22022813 and 21878268), and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (No. 2019R01006).

Return