Journal Home > Volume 15 , Issue 10

Immunosuppressive myeloid cells in the tumor microenvironment (TME) inhibit T-cell-mediated immune response and promote tumor progression. Therapeutically targeting both tumor cells and myeloid cells such as myeloid-derived suppressor cells (MDSCs), is expected to promote antitumor immunity. Gemcitabine (Gem) can serve as a chemotherapeutic drug and a MDSC-depleting agent. Aberrant activation of STAT3 promotes tumor cell growth and orchestrates the immunosuppressive activity of tumor-associated myeloid cells. Here we describe a strategy to kill tumor cells as well as inhibit the expansion and suppressive function of myeloid cells through the systemic delivery of gemcitabine monophosphate (GMP) and STAT3 siRNA (siSTAT3). To enhance their in vivo delivery efficiency, we formulate GMP and siSTAT3 into a lipid-coated calcium phosphate (LCP) nanoparticle and a liposome-protamine-hyaluronic acid (LPH) nanoparticle, respectively. Compared to the control and monotherapy groups, combined GMP and siSTAT3 nanoparticles effectively induced tumor cell death, downregulated a wide range of pro-tumor signaling pathways and immunosuppressive mediators, eliminated MDSCs, enhanced T cell effector functions in tumors and lymphoid compartments, and led to superior therapeutic efficacy in a syngeneic mouse melanoma model. Additionally, these nanoparticles can serve as adjuvant treatment to improve the therapeutic response of anti-PD-1-based immune checkpoint blockade therapy. Thus, the combination of gemcitabine chemotherapy and STAT3 inhibition through nanotechnology could effectively kill tumor cells, alleviate the immunosuppressive TME, and enhance endogenous antitumor immunity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Systemic delivery of gemcitabine analogue and STAT3 siRNA promotes antitumor immunity against melanoma

Show Author's information Huan Yan1,2,3,4,§Zhanyan Liu1,2,3,4,§Guibin Lin1,2,3,4Fei Gu1,2,3,4Yan Liu1,2,3,4Yuxiao Xu1,2,3,4Xueli Kuang1,2,3,4Yuan Zhang1,2,3,4,§( )
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China

§ Huan Yan, Zhanyan Liu, and Yuan Zhang contributed equally to this work.

Abstract

Immunosuppressive myeloid cells in the tumor microenvironment (TME) inhibit T-cell-mediated immune response and promote tumor progression. Therapeutically targeting both tumor cells and myeloid cells such as myeloid-derived suppressor cells (MDSCs), is expected to promote antitumor immunity. Gemcitabine (Gem) can serve as a chemotherapeutic drug and a MDSC-depleting agent. Aberrant activation of STAT3 promotes tumor cell growth and orchestrates the immunosuppressive activity of tumor-associated myeloid cells. Here we describe a strategy to kill tumor cells as well as inhibit the expansion and suppressive function of myeloid cells through the systemic delivery of gemcitabine monophosphate (GMP) and STAT3 siRNA (siSTAT3). To enhance their in vivo delivery efficiency, we formulate GMP and siSTAT3 into a lipid-coated calcium phosphate (LCP) nanoparticle and a liposome-protamine-hyaluronic acid (LPH) nanoparticle, respectively. Compared to the control and monotherapy groups, combined GMP and siSTAT3 nanoparticles effectively induced tumor cell death, downregulated a wide range of pro-tumor signaling pathways and immunosuppressive mediators, eliminated MDSCs, enhanced T cell effector functions in tumors and lymphoid compartments, and led to superior therapeutic efficacy in a syngeneic mouse melanoma model. Additionally, these nanoparticles can serve as adjuvant treatment to improve the therapeutic response of anti-PD-1-based immune checkpoint blockade therapy. Thus, the combination of gemcitabine chemotherapy and STAT3 inhibition through nanotechnology could effectively kill tumor cells, alleviate the immunosuppressive TME, and enhance endogenous antitumor immunity.

Keywords: nanoparticle, tumor microenvironment, immunosuppression, gemcitabine, STAT3 siRNA

References(61)

1

Nefedova, Y.; Nagaraj, S.; Rosenbauer, A.; Muro-Cacho, C.; Sebti, S. M.; Gabrilovich, D. I. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 2005, 65, 9525–9535.

2

Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012, 12, 253–268.

3

Umansky, V.; Blattner, C.; Gebhardt, C.; Utikal, J. The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 2016, 4, 36.

4

Dufait, I.; Valckenborgh, E. V.; Menu, E.; Escors, D.; De Ridder, M.; Breckpot, K. Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: An opportunity for cancer therapy. Oncotarget 2016, 7, 42698–42715.

5

Nefedova, Y.; Huang, M.; Kusmartsev, S.; Bhattacharya, R.; Cheng, P. Y.; Salup, R.; Jove, R.; Gabrilovich, D. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J. Immunol. 2004, 172, 464–474.

6

Fleming, V.; Hu, X. Y.; Weber, R.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol. 2018, 9, 398.

7

Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer 2009, 9, 798–809.

8

Albeituni, S. H.; Ding, C. L.; Yan, J. Hampering immune suppressors: Therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J. 2013, 19, 490–501.

9

Condamine, T.; Gabrilovich, D. I. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011, 32, 19–25.

10

Kortylewski, M.; Kujawski, M.; Wang, T. H.; Wei, S.; Zhang, S. M.; Pilon-Thomas, S.; Niu, G. L.; Kay, H.; Mulé, J.; Kerr, W. G. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 2005, 11, 1314–1321.

11

Bromberg, J.; Darnell Jr, J. E. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000, 19, 2468–2473.

12

Yu, H.; Jove, R. The STATs of cancer—New molecular targets come of age. Nat. Rev. Cancer 2004, 4, 97–105.

13

Soleimani, A. H.; Garg, S. M.; Paiva, I. M.; Vakili, M. R.; Alshareef, A.; Huang, Y. H.; Molavi, O.; Lai, R.; Lavasanifar, A. Micellar nano-carriers for the delivery of STAT3 dimerization inhibitors to melanoma. Drug Deliv. Transl. Res. 2017, 7, 571–581.

14

Lin, L.; Hutzen, B.; Zuo, M. X.; Ball, S.; Deangelis, S.; Foust, E.; Pandit, B.; Ihnat, M. A.; Shenoy, S. S.; Kulp, S. et al. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res. 2010, 70, 2445–2454.

15

Wang, H.; Liu, Z.; Guan, L. N.; Li, J. K.; Chen, S. Y.; Yu, W. Y.; Lai, M. D. LYW-6, a novel cryptotanshinone derived STAT3 targeting inhibitor, suppresses colorectal cancer growth and metastasis. Pharmacol. Res. 2020, 153, 104661.

16

Huang, W.; Dong, Z.; Chen, Y.; Wang, F.; Wang, C. J.; Peng, H.; He, Y.; Hangoc, G.; Pollok, K.; Sandusky, G. et al. Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene 2016, 35, 783–792.

17

Escobar, Z.; Bjartell, A.; Canesin, G.; Evans-Axelsson, S.; Sterner, O.; Hellsten, R.; Johansson, M. H. Preclinical characterization of 3β-(N-acetyl l-cysteine methyl ester)-2aβ, 3-dihydrogaliellalactone (GPA512), a prodrug of a direct STAT3 inhibitor for the treatment of prostate cancer. J. Med. Chem. 2016, 59, 4551–4562.

18
Fuh, B. ; Sobo, M. ; Cen, L. ; Josiah, D. ; Hutzen, B. ; Cisek, K. ; Bhasin, D. ; Regan, N. ; Lin, L. ; Chan, C. et al. LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br. J. Cancer 2009, 100, 106–112.
19

Bai, L. C.; Zhou, H. B.; Xu, R. Q.; Zhao, Y. J.; Chinnaswamy, K.; McEachern, D.; Chen, J. Y.; Yang, C. Y.; Liu, Z. M.; Wang, M. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 2019, 36, 498–511.e17.

20

Mayr, B.; Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2001, 2, 599–609.

21

Coleman IV, D. R.; Ren, Z. Y.; Mandal, P. K.; Cameron, A. G.; Dyer, G. A.; Muranjan, S.; Campbell, M.; Chen, X. M.; McMurray, J. S. Investigation of the binding determinants of phosphopeptides targeted to the SRC homology 2 domain of the signal transducer and activator of transcription 3. Development of a high-affinity peptide inhibitor. J. Med. Chem. 2005, 48, 6661–6670.

22

Furtek, S. L.; Backos, D. S.; Matheson, C. J.; Reigan, P. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem. Biol. 2016, 11, 308–318.

23

Arnold, L. A.; Kosinski, A.; Estébanez-Perpiñá, E.; Guy, R. K. Inhibitors of the interaction of a thyroid hormone receptor and coactivators: Preliminary structure–activity relationships. J. Med. Chem. 2007, 50, 5269–5280.

24

Caboni, L.; Lloyd, D. G. Beyond the ligand-binding pocket: Targeting alternate sites in nuclear receptors. Med. Res. Rev. 2013, 33, 1081–1118.

25

Younis, A.; Siddique, M. I.; Kim, C. K.; Lim, K. B. RNA interference (RNAi) induced gene silencing: A promising approach of hi-tech plant breeding. Int. J. Biol. Sci. 2014, 10, 1150–1158.

26

Oguri, T.; Achiwa, H.; Sato, S.; Bessho, Y.; Takano, Y.; Miyazaki, M.; Muramatsu, H.; Maeda, H.; Niimi, T.; Ueda, R. The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: A role of ABCC5 in gemcitabine sensitivity. Mol. Cancer Ther. 2006, 5, 1800–1806.

27
Mandruzzato, S. ; Solito, S. ; Falisi, E. ; Francescato, S. ; Chiarion-Sileni, V. ; Mocellin, S. ; Zanon, A. ; Rossi, C. R. ; Nitti, D. ; Bronte, V. et al. IL4Rα+ myeloid-derived suppressor cell expansion in cancer patients. J. Immunol. 2009, 182, 6562–6568.
28
Zhang, Y. ; Satterlee, A. ; Huang, L. In vivo gene delivery by nonviral vectors: Overcoming hurdles? Mol. Ther. 2012, 20, 1298–1304.
29

Workman, P.; Aboagye, E. O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D. J.; Double, J. A.; Everitt, J.; Farningham, D. A. H.; Glennie, M. J. et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 2010, 102, 1555–1577.

30

Zhang, Y.; Bush, X.; Yan, B. F.; Chen, J. A. Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials 2019, 189, 48–59.

31

Zhang, Y.; Schwerbrock, N. M.; Rogers, A. B.; Kim, W. Y.; Huang, L. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol. Ther. 2013, 21, 1559–1569.

32

Qi, L. M.; Ma, J. M.; Shen, J. L. Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions. J. Colloid Interface Sci. 1997, 186, 498–500.

33

Mozafari, M. R.; Reed, C. J.; Rostron, C.; Kocum, C.; Piskin, E. Formation and characterisation of non-toxic anionic liposomes for delivery of therapeutic agents to the pulmonary airways. Cell. Mol. Biol. Lett. 2002, 7, 243–244.

34

Zhang, Y.; Kim, W. Y.; Huang, L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials 2013, 34, 3447–3458.

35
Al Zaid Siddiquee, K. ; Turkson, J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008, 18, 254–267.
36

Ostrand-Rosenberg, S. Myeloid derived-suppressor cells: Their role in cancer and obesity. Curr. Opin. Immunol. 2018, 51, 68–75.

37

Yang, J. B.; Chatterjee-Kishore, M.; Staugaitis, S. M.; Nguyen, H.; Schlessinger, K.; Levy, D. E.; Stark, G. R. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res. 2005, 65, 939–947.

38

Gato-Cañas, M.; de Morentin, X. M.; Blanco-Luquin, I.; Fernandez-Irigoyen, J.; Zudaire, I.; Liechtenstein, T.; Arasanz, H.; Lozano, T.; Casares, N.; Chaikuad, A. et al. A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget 2015, 6, 27160–27175.

39
Wang, J. ; Zhang, Y. ; Yin, K. ; Xu, P. Q. ; Tian, J. ; Ma, J. ; Tian, X. Y. ; Wang, Y. G. ; Tang, X. Y. ; Xu, H. X. et al. IL-17A weakens the antitumor immunity by inhibiting apoptosis of MDSCs in Lewis lung carcinoma bearing mice. Oncotarget 2017, 8, 4814–4825.
40

Chalmin, F.; Mignot, G.; Bruchard, M.; Chevriaux, A.; Végran, F.; Hichami, A.; Ladoire, S.; Derangère, V.; Vincent, J.; Masson, D. et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 2012, 36, 362–373.

41

Pearson, G.; Robinson, F.; Gibson, T. B.; Xu, B. E.; Karandikar, M.; Berman, K.; Cobb, M. H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 2001, 22, 153–183.

42

Grohmann, U.; Mondanelli, G.; Belladonna, M. L.; Orabona, C.; Pallotta, M. T.; Iacono, A.; Puccetti, P.; Volpi, C. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 2017, 35, 37–45.

43

Speiser, D. E.; Ho, P. C.; Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 2016, 16, 599–611.

44

Schouppe, E.; Van Overmeire, E.; Laoui, D.; Keirsse, J.; Van Ginderachter, J. A. Modulation of CD8+ T-cell activation events by monocytic and granulocytic myeloid-derived suppressor cells. Immunobiology 2013, 218, 1385–1391.

45

Cheng, P. Y.; Corzo, C. A.; Luetteke, N.; Yu, B.; Nagaraj, S.; Bui, M. M.; Ortiz, M.; Nacken, W.; Sorg, C.; Vogl, T. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 2008, 205, 2235–2249.

46

Eriksson, E.; Wenthe, J.; Irenaeus, S.; Loskog, A.; Ullenhag, G. Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J. Transl. Med. 2016, 14, 282.

47

Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016, 37, 208–220.

48

Murdoch, C.; Muthana, M.; Coffelt, S. B.; Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 2008, 8, 618–631.

49

Yang, L.; DeBusk, L. M.; Fukuda, K.; Fingleton, B.; Green-Jarvis, B.; Shyr, Y.; Matrisian, L. M.; Carbone, D. P.; Lin, P. C. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004, 6, 409–421.

50

Goedegebuure, P.; Mitchem, J. B.; Porembka, M. R.; Tan, M. C. B.; Belt, B. A.; Wang-Gillam, A.; Gillanders, W. E.; Hawkins, W. G.; Linehan, D. C. Myeloid-derived suppressor cells: General characteristics and relevance to clinical management of pancreatic cancer. Curr. Cancer Drug Targets 2011, 11, 734–751.

51

Strawn, L. M.; McMahon, G.; App, H.; Schreck, R.; Kuchler, W. R.; Longhi, M. P.; Hui, T. H.; Tang, C.; Levitzki, A.; Gazit, A. et al. Flk-1 as a target for tumor growth inhibition. Cancer Res. 1996, 56, 3540–3545.

52

Zou, S. L.; Tong, Q. Y.; Liu, B. W.; Huang, W.; Tian, Y.; Fu, X. H. Targeting STAT3 in cancer immunotherapy. Mol. Cancer 2020, 19, 145.

53

Venkatasubbarao, K.; Peterson, L.; Zhao, S. J.; Hill, P.; Cao, L.; Zhou, Q.; Nawrocki, S. T.; Freeman, J. W. Inhibiting signal transducer and activator of transcription-3 increases response to gemcitabine and delays progression of pancreatic cancer. Mol. Cancer 2013, 12, 104.

54

Youn, J. I.; Nagaraj, S.; Collazo, M.; Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 2008, 181, 5791–5802.

55
Mencacci, A. ; Montagnoli, C. ; Bacci, A. ; Cenci, E. ; Pitzurra, L. ; Spreca, A. ; Kopf, M. ; Sharpe, A. H. ; Romani, L. CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J. Immunol. 2002, 169, 3180–3190.
56
Yang, R. C. ; Cai, Z. ; Zhang, Y. ; Yutzy IV, W. H. ; Roby K. F. ; Roden R. B. S. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res. 2006, 66, 6807–6815.
57

Norian, L. A.; Rodriguez, P. C.; O'Mara, L. A.; Zabaleta, J.; Ochoa, A. C.; Cella, M.; Allen, P. M. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res. 2009, 69, 3086–3094.

58

Meireson, A.; Devos, M.; Brochez, L. IDO expression in cancer: Different compartment, different functionality. Front. Immunol. 2020, 11, 531491.

59
Attili, I. ; Karachaliou, N. ; Bonanno, L. ; Berenguer, J. ; Bracht, J. ; Codony-Servat, J. ; Codony-Servat, C. ; Ito, M. ; Rosell, R. STAT3 as a potential immunotherapy biomarker in oncogene-addicted non-small cell lung cancer. Ther. Adv. Med. Oncol. 2018, 10, 1758835918763744.
60

Casey, S. C.; Baylot, V.; Felsher, D. W. The MYC oncogene is a global regulator of the immune response. Blood 2018, 131, 2007–2015.

61

Weber, R.; Fleming, V.; Hu, X. Y.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front. Immunol. 2018, 9, 1310.

File
12274_2022_4525_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2022
Revised: 06 May 2022
Accepted: 09 May 2022
Published: 06 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Basic and Applied Basic Research Foundation of Guangdong Province (No. 2020A1515111204), the Fundamental Research Funds for the Central Universities (No. 2020ZYGXZR099), the Recruitment Program of Global Experts, the National Natural Science Foundation of China (No. 82172080). We would like to thank the Research Core Facilities at the South China University of Technology.

Return