Journal Home > Volume 15 , Issue 10

Formamidine (FA)-based perovskite solar cells (PSCs) are promising candidates for photoelectric conversion devices due to their excellent optoelectronic properties. However, the instability of perovskites, especially moisture instability, remains one of the biggest obstacles to the commercialization of perovskite devices. Therefore, it is very important to explore and target the effect of moisture on FA-based perovskites to prevent this effect and improve device stability. Herein, we studied the degradation process of commonly used FA-based perovskite films by X-ray diffraction and scanning electron microscopy characterization and analyzed the reasons for their humidity-induced degradation. Subsequently, we further adopted a strategy by adding methylammonium bromine powder into a PbI2 precursor solution to prepare a seed solution in a two-step preparation process to enhance the performance and stability of FA-based PSCs. Finally, the degradation rate of the obtained perovskite film was significantly slowed down under high humidity compared to that of perovskite films prepared by a two-step method without applying a seed solution. The corresponding device achieved a remarkable power conversion efficiency of 23.22%, and the efficiency of this device showed no attenuation after 900 h of exposure to air.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Degradation mechanism and stability improvement of formamidine-based perovskite solar cells under high humidity conditions

Show Author's information Fengren Cao§Peng Zhang§Haoxuan SunMeng WangLiang Li( )
School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China

§ Fengren Cao and Peng Zhang contributed equally to this work.

Abstract

Formamidine (FA)-based perovskite solar cells (PSCs) are promising candidates for photoelectric conversion devices due to their excellent optoelectronic properties. However, the instability of perovskites, especially moisture instability, remains one of the biggest obstacles to the commercialization of perovskite devices. Therefore, it is very important to explore and target the effect of moisture on FA-based perovskites to prevent this effect and improve device stability. Herein, we studied the degradation process of commonly used FA-based perovskite films by X-ray diffraction and scanning electron microscopy characterization and analyzed the reasons for their humidity-induced degradation. Subsequently, we further adopted a strategy by adding methylammonium bromine powder into a PbI2 precursor solution to prepare a seed solution in a two-step preparation process to enhance the performance and stability of FA-based PSCs. Finally, the degradation rate of the obtained perovskite film was significantly slowed down under high humidity compared to that of perovskite films prepared by a two-step method without applying a seed solution. The corresponding device achieved a remarkable power conversion efficiency of 23.22%, and the efficiency of this device showed no attenuation after 900 h of exposure to air.

Keywords: solar cell, formamidine-based perovskite, moisture degradation, seed solution

References(41)

1

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

2

Liu, Z. Y.; Liu, P. F.; Li, M.; He, T. W.; Liu, T. X.; Yu, L. M.; Yuan, M. J. Efficient and stable FA-rich perovskite photovoltaics: From material properties to device optimization. Adv. Energy Mater. 2022, 12, 2200111.

3

Zhang, C.; Wang, H. X.; Li, H. Y.; Zhuang, Q. X.; Gong, C.; Hu, X. F.; Cai, W. S.; Zhao, S. Y.; Chen, J. Z.; Zang, Z. G. Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. J. Energy Chem. 2021, 63, 452–460.

4

Christians, J. A.; Herrera, P. A. M.; Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137, 1530–1538.

5

Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147.

6

Holzhey, P.; Yadav, P.; Turren-Cruz, S. H.; Ummadisingu, A.; Grätzel, M.; Hagfeldt, A.; Saliba, M. A chain is as strong as its weakest link-stability study of MAPbI3 under light and temperature. Mater. Today 2019, 29, 10–19.

7

Ouyang, Y. X.; Li, Y. J.; Zhu, P. C.; Li, Q.; Gao, Y.; Tong, J. Y.; Shi, L.; Zhou, Q. H.; Ling, C. Y.; Chen, Q. et al. Photo-oxidative degradation of methylammonium lead iodide perovskite: Mechanism and protection. J. Mater. Chem. A 2019, 7, 2275–2282.

8

Troughton, J.; Hooper, K.; Watson, T. M. Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules. Nano Energy 2017, 39, 60–68.

9

Huang, J. B.; Tan, S. Q.; Lund, P. D.; Zhou, H. P. Impact of H2O on organic–inorganic hybrid perovskite solar cells. Energy Environ. Sci. 2017, 10, 2284–2311.

10

Lee, J. W.; Bae, S. H.; Hsieh, Y. T.; De Marco, N.; Wang, M. K.; Sun, P. Y.; Yang, Y. A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 2017, 3, 290–302.

11

Zhu, J.; Kim, D. H.; Kim, J. D.; Lee, D. G.; Kim, W. B.; Chen, S. W.; Kim, J. Y.; Lee, J. M.; Lee, H.; Han, G. S. et al. All-in-one Lewis base for enhanced precursor and device stability in highly efficient perovskite solar cells. ACS Energy Lett. 2021, 6, 3425–3434.

12

Liu, Z. Z.; Cao, F. R.; Wang, M.; Wang, M.; Li, L. Observing defect passivation of the grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells. Angew. Chem., Int. Ed. 2020, 59, 4161–4167.

13

Xie, L.; Chen, J.; Vashishtha, P.; Zhao, X.; Shin, G. S.; Mhaisalkar, S. G.; Park, N. G. Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells. ACS Energy Lett. 2019, 4, 2192–2200.

14

Watson, B. L.; Rolston, N.; Bush, K. A.; Taleghani, L.; Dauskardt, R. H. Synthesis and use of a hyper-connecting cross-linking agent in the hole-transporting layer of perovskite solar cells. J. Mater. Chem. A 2017, 5, 19267–19279.

15

Zhang, S. S.; Liu, Z. H.; Zhang, W. J.; Jiang, Z. Y.; Chen, W. T.; Chen, R.; Huang, Y. Q.; Yang, Z. C.; Zhang, Y. Q.; Han, L. Y. et al. Barrier designs in perovskite solar cells for long-term stability. Adv. Energy Mater. 2020, 10, 2001610.

16

Song, D. D.; Wei, D.; Cui, P.; Li, M. C.; Duan, Z. Q.; Wang, T. Y.; Ji, J.; Li, Y. Y.; Mbengue, J. M.; Li, Y. F. et al. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J. Mater. Chem. A 2016, 4, 6091–6097.

17

Hu, Q.; Chen, W.; Yang, W. Q.; Li, Y.; Zhou, Y. C.; Larson, B. W.; Johnson, J. C.; Lu, Y. H.; Zhong, W. K.; Xu, J. Q. et al. Improving efficiency and stability of perovskite solar cells enabled by a near-infrared-absorbing moisture barrier. Joule 2020, 4, 1575–1593.

18

Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A. G.; Falaras, P.; Argitis, P.; Yusoff, A. R. B. M.; Nazeeruddin, M. K. Molecular materials as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 2020, 49, 4496–4526.

19

Brinkmann, K. O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 2017, 8, 13938.

20

Shi, L.; Bucknall, M. P.; Young, T. L.; Zhang, M.; Hu, L.; Bing, J. M.; Lee, D. S.; Kim, J.; Wu, T.; Takamure, N. et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 2020, 368, eaba2412.

21

Wang, S. S.; Zhang, Z. P.; Tang, Z. K.; Su, C. L.; Huang, W.; Li, Y.; Xing, G. C. Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy 2021, 82, 105712.

22

Cheacharoen, R.; Rolston, N.; Harwood, D.; Bush, K. A.; Dauskardt, R. H.; McGehee, M. D. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 2018, 11, 144–150.

23

Ma, S.; Yuan, G. Z.; Zhang, Y.; Yang, N.; Li, Y. J.; Chen, Q. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 2022, 15, 13–55.

24

Lu, Q.; Yang, Z. C.; Meng, X.; Yue, Y. F.; Ahmad, M. A.; Zhang, W. J.; Zhang, S. S.; Zhang, Y. Q.; Liu, Z. H.; Chen, W. A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2100151.

25

Kundu, S.; Kelly, T. L. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat 2020, 2, e12025.

26

Yun, J. S.; Kim, J.; Young, T.; Patterson, R. J.; Kim, D.; Seidel, J.; Lim, S.; Green, M. A.; Huang, S. J.; Ho-Baillie, A. Humidity-induced degradation via grain boundaries of HC(NH2)2PbI3 planar perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1705363.

27

Zhao, Y. C.; Tan, H. R.; Yuan, H. F.; Yang, Z. Y.; Fan, J. Z.; Kim, J.; Voznyy, O.; Gong, X. W.; Quan, L. N.; Tan, C. S. et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 2018, 9, 1607.

28

Jeong, J.; Kim, H. B.; Yoon, Y. J.; An, N. G.; Song, S.; Kim, J. W.; Kim, M.; Jang, H.; Kim, D. S.; Kim, G. H. et al. The introduction of a perovskite seed layer for high performance perovskite solar cells. J. Mater. Chem. A 2018, 6, 20138–20144.

29

Lin, C. Y.; Li, S. S.; Chang, J. W.; Chia, H. C.; Hsiao, Y. Y.; Su, C. J.; Lian, B. J.; Wen, C. Y.; Huang, S. K.; Wu, W. R. et al. Unveiling the nanoparticle-seeded catalytic nucleation kinetics of perovskite solar cells by time-resolved GIXS. Adv. Funct. Mater. 2019, 29, 1902582.

30

Yi, X. H.; Zhang, Z. M.; Chang, A. L.; Mao, Y. C.; Luan, Y. G.; Lin, T.; Wei, Y. Z.; Zhang, Y. Y.; Wang, F. Y.; Cao, S. K. et al. Incorporating CsF into the PbI2 film for stable mixed cation-halide perovskite solar cells. Adv. Energy Mater. 2019, 9, 1901726.

31

Euvrard, J.; Gunawan, O.; Mitzi, D. B. Impact of PbI2 passivation and grain size engineering in CH3NH3PbI3 solar absorbers as revealed by carrier-resolved photo-hall technique. Adv. Energy Mater. 2019, 9, 1902706.

32

Jiang, Y. Y.; He, X. Y.; Liu, T. F.; Zhao, N.; Qin, M. C.; Liu, J. X.; Jiang, F. Y.; Qin, F.; Sun, L.; Lu, X. H. et al. Intralayer a-site compositional engineering of ruddlesden-popper perovskites for thermostable and efficient solar cells. ACS Energy Lett. 2019, 4, 1216–1224.

33

Yuan, S. H.; Qian, F.; Yang, S. M.; Cai, Y.; Wang, Q.; Sun, J.; Liu, Z. K.; Liu, S. Z. NbF5: A novel α-phase stabilizer for FA-based perovskite solar cells with high efficiency. Adv. Funct. Mater. 2019, 29, 1807850.

34

Zhang, Y.; Zhou, Z. M.; Ji, F. X.; Li, Z. P.; Cui, G. L.; Gao, P.; Oveisi, E.; Nazeeruddin, M. K.; Pang, S. P. Trash into treasure: δ-FAPbI3 polymorph stabilized MAPbI3 perovskite with power conversion efficiency beyond 21%. Adv. Mater. 2018, 30, 1707143.

35

Liu, Y. H.; Akin, S.; Hinderhofer, A.; Eickemeyer, F. T.; Zhu, H. W.; Seo, J. Y.; Zhang, J. H.; Schreiber, F.; Zhang, H.; Zakeeruddin, S. M. et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem., Int. Ed. 2020, 59, 15688–15694.

36

Marchezi, P. E.; Therézio, E. M.; Szostak, R.; Loureiro, H. C.; Bruening, K.; Gold-Parker, A.; Melo Jr, M. A.; Tassone, C. J.; Tolentino, H. C. N.; Toney, M. F. et al. Degradation mechanisms in mixed-cation and mixed-halide CsxFA1-xPb(BryI1-y)3 perovskite films under ambient conditions. J. Mater. Chem. A 2020, 8, 9302–9312.

37

Gratia, P.; Zimmermann, I.; Schouwink, P.; Yum, J. H.; Audinot, J. N.; Sivula, K.; Wirtz, T.; Nazeeruddin, M. K. The many faces of mixed ion perovskites: Unraveling and understanding the crystallization process. ACS Energy Lett. 2017, 2, 2686–2693.

38

Ye, F. H.; Ma, J. J.; Chen, C.; Wang, H. B.; Xu, Y. H.; Zhang, S. P.; Wang, T.; Tao, C.; Fang, G. J. Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 2021, 33, 2007126.

39

Kim, M.; Kim, G. H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192.

40

Li, C.; Guo, Q.; Zhang, H. J.; Bai, Y. M.; Wang, F. Z.; Liu, L.; Hayat, T.; Alsaedi, A.; Tan, Z. A. Enhancing the crystallinity of HC(NH2)2PbI3 film by incorporating methylammonium halide intermediate for efficient and stable perovskite solar cells. Nano Energy 2017, 40, 248–257.

41

Xie, F. X.; Chen, C. C.; Wu, Y. Z.; Li, X.; Cai, M. L.; Liu, X.; Yang, X. D.; Han, L. Y. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 2017, 10, 1942–1949.

File
12274_2022_4524_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2022
Revised: 30 April 2022
Accepted: 09 May 2022
Published: 10 June 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 52025028 and 52002258), the Ministry of Science and Technology of China (No. 2021YFA1500803), the Natural Science Foundation of Jiangsu Province (Nos. BK20200877 and BK20210728), “Shuangchuang” Program of Jiangsu Province, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Return