Journal Home > Volume 15 , Issue 10

Significant chiroptical responses could be generated by chiral coupling of achiral plasmonic nanoparticles, or originated from intrinsically chiral plasmonic nanoparticles. Here we create dimeric plasmonic metamolecules possessing both chiral coupling between nanoparticles and intrinsic chiroptical responses derived from nanoparticles themselves. These plasmonic metamolecules are prepared by assembling helical plasmonic nanorods (HPNRs) with intrinsic chirality in chiral manners on DNA origami template. Two HPNRs with the same or opposite chirality, or one HPNR and one achiral gold nanorod, are coupled chirally into dimeric metamolecules with intriguing plasmonic circular dichroism (PCD). We found that both of the intrinsic chirality of constituent HPNRs and the chiral coupling contribute to the overall PCD while their weights are different in different metamolecules and vary in different wavelength range for a certain metamolecule. Comparing to conventional chiral plasmonic metamolecules from achiral nanoparticles, or discrete chiral nanoparticles, these metamolecules bring more dimensions for tailoring chiroptical responses and make it more flexible to design plasmonic nanodevices with custom PCD.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles

Show Author's information Jiahao Pan1,2Xiaoyao Wang1,2Jinjin Zhang2,3Qin Zhang2,4Qiangbin Wang1,2,5Chao Zhou1,2( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Significant chiroptical responses could be generated by chiral coupling of achiral plasmonic nanoparticles, or originated from intrinsically chiral plasmonic nanoparticles. Here we create dimeric plasmonic metamolecules possessing both chiral coupling between nanoparticles and intrinsic chiroptical responses derived from nanoparticles themselves. These plasmonic metamolecules are prepared by assembling helical plasmonic nanorods (HPNRs) with intrinsic chirality in chiral manners on DNA origami template. Two HPNRs with the same or opposite chirality, or one HPNR and one achiral gold nanorod, are coupled chirally into dimeric metamolecules with intriguing plasmonic circular dichroism (PCD). We found that both of the intrinsic chirality of constituent HPNRs and the chiral coupling contribute to the overall PCD while their weights are different in different metamolecules and vary in different wavelength range for a certain metamolecule. Comparing to conventional chiral plasmonic metamolecules from achiral nanoparticles, or discrete chiral nanoparticles, these metamolecules bring more dimensions for tailoring chiroptical responses and make it more flexible to design plasmonic nanodevices with custom PCD.

Keywords: gold nanoparticle, plasmonic circular dichroism, DNA origami, chiral plasmonics

References(49)

1

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

2

Liz-Marzán, L. M. Plasmonics. Electron oscillations and beyond. J. Phys. Chem. Lett. 2013, 4, 1197–1198.

3

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

4

Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

5

Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

6

Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 2010, 132, 3248–3249.

7

Niu, R. J.; Song, C. Y.; Gao, F.; Fang, W. N.; Jiang, X. Y.; Ren, S. K.; Zhu, D.; Su, S.; Chao, J.; Chen, S. F. et al. DNA origami-based nanoprinting for the assembly of plasmonic nanostructures with single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2021, 60, 11695–11701.

8

Zhan, P. F.; Wen, T.; Wang, Z. G.; He, Y. B.; Shi, J.; Wang, T.; Liu, X. F.; Lu, G. W.; Ding, B. Q. DNA origami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2018, 57, 2846–2850.

9

Trofymchuk, K.; Glembockyte, V.; Grabenhorst, L.; Steiner, F.; Vietz, C.; Close, C.; Pfeiffer, M.; Richter, L.; Schütte, M. L.; Selbach, F. et al. Addressable nanoantennas with cleared hotspots for single-molecule detection on a portable smartphone microscope. Nat. Commun. 2021, 12, 950.

10

Song, M.; Tong, L. M.; Liu, S. L.; Zhang, Y. W.; Dong, J. Y.; Ji, Y. L.; Guo, Y.; Wu, X. C.; Zhang, X. D.; Wang, R. Y. Nonlinear amplification of chirality in self-assembled plasmonic nanostructures. ACS Nano 2021, 15, 5715–5724.

11

Wang, Z. Y.; Zhang, N. N.; Li, J. C.; Lu, J.; Zhao, L.; Fang, X. D.; Liu, K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. Soft Matter 2021, 17, 6298–6304.

12

Han, B.; Shi, L.; Gao, X. Q.; Guo, J.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Ultra-stable silica-coated chiral au-nanorod assemblies: Core-shell nanostructures with enhanced chiroptical properties. Nano Res. 2016, 9, 451–457.

13

Fan, Z. Y.; Govorov, A. O. Helical metal nanoparticle assemblies with defects: Plasmonic chirality and circular dichroism. J. Phys. Chem. C 2011, 115, 13254–13261.

14

Auguié, B.; Alonso-Gómez, J. L.; Guerrero-Martínez, A.; Liz-Marzán, L. M. Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods. J. Phys. Chem. Lett. 2011, 2, 846–851.

15

Lu, J.; Xue, Y.; Bernardino, K.; Zhang, N. N.; Gomes, W. R.; Ramesar, N. S.; Liu, S. H.; Hu, Z.; Sun, T. M.; De Moura, A. F. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 2021, 371, 1368–1374.

16

Pal, S.; Deng, Z. T.; Wang, H. N.; Zou, S. L.; Liu, Y.; Yan, H. DNA directed self-assembly of anisotropic plasmonic nanostructures. J. Am. Chem. Soc. 2011, 133, 17606–17609.

17

Liu, W. Y.; Halverson, J.; Tian, Y.; Tkachenko, A. V.; Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 2016, 8, 867–873.

18

Zhao, Z.; Chen, X. H.; Zuo, J. W.; Basiri, A.; Choi, S.; Yao, Y.; Liu, Y.; Wang, C. Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami. Nano Res. 2022, 15, 1327–1337.

19

Kuzyk, A.; Jungmann, R.; Acuna, G. P.; Liu, N. DNA origami route for nanophotonics. ACS Photonics 2018, 5, 1151–1163.

20

Liu, S. B.; Shang, Y. X.; Jiao, Y. F.; Li, N.; Ding, B. Q. DNA-based plasmonic nanostructures and their optical and biomedical applications. Nanotechnology 2021, 32, 402002.

21

Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.

22

Shen, X. B.; Song, C.; Wang, J. Y.; Shi, D. W.; Wang, Z. A.; Liu, N.; Ding, B. Q. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 2012, 134, 146–149.

23

Shen, X. B.; Asenjo-Garcia, A.; Liu, Q.; Jiang, Q.; de Abajo, F. J. G.; Liu, N.; Ding, B. Q. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013, 13, 2128–2133.

24

Shen, X. B.; Zhan, P. F.; Kuzyk, A.; Liu, Q.; Asenjo-Garcia, A.; Zhang, H.; de Abajo, F. J. G.; Govorov, A.; Ding, B. Q.; Liu, N. 3D plasmonic chiral colloids. Nanoscale 2014, 6, 2077–2081.

25

Lan, X.; Lu, X. X.; Shen, C. Q.; Ke, Y. G.; Ni, W. H.; Wang, Q. B. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 2015, 137, 457–462.

26

Liu, Y.; Ma, L.; Jiang, S. X.; Han, C.; Tang, P.; Yang, H.; Duan, X. Y.; Liu, N.; Yan, H.; Lan, X. DNA programmable self-assembly of planar, thin-layered chiral nanoparticle superstructures with complex two-dimensional patterns. ACS Nano 2021, 15, 16664–16672.

27

Kuzyk, A.; Schreiber, R.; Zhang, H.; Govorov, A. O.; Liedl, T.; Liu, N. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 2014, 13, 862–866.

28

Zhou, C.; Duan, X. Y.; Liu, N. A plasmonic nanorod that walks on DNA origami. Nat. Commun. 2015, 6, 8102.

29

Xin, L.; Zhou, C.; Duan, X. Y.; Liu, N. A rotary plasmonic nanoclock. Nat. Commun. 2019, 10, 5394.

30

Dong, J. Y.; Wang, M.; Zhou, Y. H.; Zhou, C.; Wang, Q. B. DNA-based adaptive plasmonic logic gates. Angew, Chem., Int. Ed. 2020, 59, 15038–15042.

31

Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

32

Klös, G.; Andersen, A.; Miola, M.; Birkedal, H.; Sutherland, D. S. Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Res. 2019, 12, 1635–1642.

33

Kim, J. Y.; Yeom, J.; Zhao, G. P.; Calcaterra, H.; Munn, J.; Zhang, P. J.; Kotov, N. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 2019, 141, 11739–11744.

34

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

35

Cho, N. H.; Byun, G. H.; Lim, Y. C.; Im, S. W.; Kim, H.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602.

36

Lee, H. E.; Kim, R. M.; Ahn, H. Y.; Lee, Y. Y.; Byun, G. H.; Im, S. W.; Mun, J.; Rho, J.; Nam, K. T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263.

37

González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2020, 368, 1472–1477.

38

Wang, S.; Zheng, L. H.; Chen, W. J.; Ji, L. K.; Zhang, L.; Lu, W. S.; Fang, Z. Y.; Guo, F. C.; Qi, L. M.; Liu, M. H. Helically grooved gold nanoarrows: Controlled fabrication, superhelix, and transcribed chiroptical switching. CCS Chemistry 2021, 3, 2473–2484.

39

Chen, J. Q.; Gao, X. S.; Zheng, Q.; Liu, J. B.; Meng, D. J.; Li, H. Y.; Cai, R.; Fan, H. Z.; Ji, Y. L.; Wu, X. C. Bottom-up synthesis of helical plasmonic nanorods and their application in generating circularly polarized luminescence. ACS Nano 2021, 15, 15114–15122.

40

Xu, L. G.; Wang, X. X.; Wang, W. W.; Sun, M. Z.; Choi, W. J.; Kim, J. Y.; Hao, C. L.; Li, S.; Qu, A. H.; Lu, M. R. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.

41

Zhang, N. N.; Sun, H. R.; Liu, S. H.; Xing, Y. C.; Lu, J.; Peng, F.; Han, C. L.; Wei, Z. L.; Sun, T. M.; Yang, B. et al. Gold nanoparticle enantiomers and their chiral-morphology dependence of cellular uptake. CCS Chem. 2022, 4, 660–670.

42
Zheng, G. C.; Jiao, S. L.; Zhang, W.; Wang, S. L.; Zhang, Q. H.; Gu, L.; Ye, W. X.; Li, J. J.; Ren, X. C ; Zhang, Z. C. et al. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res., in press, https://doi.org/10.1007/s12274-022-4212-y.
43

Zheng, G. C.; Bao, Z. Y.; Pérez-Juste, J.; Du, R. L.; Liu, W.; Dai, J. Y.; Zhang, W.; Lee, L. Y. S.; Wong, K. Y. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew. Chem., Int. Ed. 2018, 57, 16452–16457.

44

Hao, C. L.; Xu, L. G.; Sun, M. Z.; Ma, W.; Kuang, H.; Xu, C. L. Chirality on hierarchical self-assembly of Au@AuAg yolk-shell nanorods into core-satellite superstructures for biosensing in human cells. Adv. Funct. Mater. 2018, 28, 1802372.

45

Zheng, G. C.; He, J. J.; Kumar, V.; Wang, S. L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Wong, K. Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754.

46

Dong, J. Y.; Zhou, Y. H.; Pan, J. H.; Zhou, C.; Wang, Q. B. Assembling gold nanobipyramids into chiral plasmonic nanostructures with DNA origami. Chem. Commun. 2021, 57, 6201–6204.

47

Fan, Z. Y.; Govorov, A. O. Chiral nanocrystals: Plasmonic spectra and circular dichroism. Nano Lett. 2012, 12, 3283–3289.

48

Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.

49

Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009, 37, 5001–5006.

File
12274_2022_4520_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 April 2022
Revised: 09 May 2022
Accepted: 09 May 2022
Published: 26 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21977112, and 21934007), the Natural Science Foundation of Jiangsu Province (No. BK20190227), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000) and the Science and Technology Project of Suzhou (No. SZS201904).

Return