Journal Home > Volume 15 , Issue 10

Polymeric carbon nitride (CN) as a metal-free photocatalyst holds great promise to produce high-value chemicals and H2 fuel utilizing clean solar energy. However, the wider deployment of pristine CN is critically hampered by the poor charge carrier transport and high recombination. Herein, we develop a facile salt template-assisted interfacial polymerization strategy that in-situ introduces alkali ions (Na+, K+) and nitrogen defects in CN (denoted as v-CN-KNa) to simultaneously promote charge separation and transportation and steer photoexcited holes and electrons to their oxidation and reduction sites. The photocatalyst exhibits an impressive photocatalytic H2 evolution rate of 8641.5 μmol·g−1·h−1 (33-fold higher than pristine CN) and also works readily in real seawater (10752.0 μmol·g−1·h−1) with a high apparent quantum efficiency up to 18.5% at 420 nm. In addition, we further demonstrate that the v-CN-KNa can simultaneously produce H2 and N-benzylidenebenzylamine without using any other sacrificial reagent. In situ characterizations and DFT calculations reveal that the alkali ions notably promote charge transport, while the nitrogen defects generate abundant edge active sites, which further contribute to efficient electron excitation to trigger photoredox reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defect-rich ultrathin poly-heptazine-imide-framework nanosheets with alkali-ion doping for photocatalytic solar hydrogen and selective benzylamine oxidation

Show Author's information Chaofeng Zhu1,§Xiao Luo2,§Congyan Liu1Yang Wang1,3Xihai Chen1Yan Wang1Qing Hu1Xiaojun Wu2( )Bo Liu1( )
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Synergetic Innovation of Quantum Information & Quantum Technology, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei 230026, China
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany

§ Chaofeng Zhu and Xiao Luo contributed equally to this work.

Abstract

Polymeric carbon nitride (CN) as a metal-free photocatalyst holds great promise to produce high-value chemicals and H2 fuel utilizing clean solar energy. However, the wider deployment of pristine CN is critically hampered by the poor charge carrier transport and high recombination. Herein, we develop a facile salt template-assisted interfacial polymerization strategy that in-situ introduces alkali ions (Na+, K+) and nitrogen defects in CN (denoted as v-CN-KNa) to simultaneously promote charge separation and transportation and steer photoexcited holes and electrons to their oxidation and reduction sites. The photocatalyst exhibits an impressive photocatalytic H2 evolution rate of 8641.5 μmol·g−1·h−1 (33-fold higher than pristine CN) and also works readily in real seawater (10752.0 μmol·g−1·h−1) with a high apparent quantum efficiency up to 18.5% at 420 nm. In addition, we further demonstrate that the v-CN-KNa can simultaneously produce H2 and N-benzylidenebenzylamine without using any other sacrificial reagent. In situ characterizations and DFT calculations reveal that the alkali ions notably promote charge transport, while the nitrogen defects generate abundant edge active sites, which further contribute to efficient electron excitation to trigger photoredox reactions.

Keywords: carbon nitride, photocatalysis, hydrogen production, alkali ion doping, amine oxidative coupling

References(70)

1

Davis, S. J.; Lewis, N. S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I. L.; Benson, S. M.; Bradley, T.; Brouwer, J.; Chiang, Y. M. et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793.

2

Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.

3

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

4

Wang, L.; Liu, J.; Wang, H. Y.; Cheng, H.; Wu, X. J.; Zhang, Q.; Xu, H. X. Forming electron traps deactivates self-assembled crystalline organic nanosheets toward photocatalytic overall water splitting. Sci. Bull. 2021, 66, 265–274.

5

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

6

Kessler, F. K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X. C.; Bojdys, M. J. Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 17030.

7

Lau, V. W. H.; Lotsch, B. V. A tour-guide through carbon nitride-land: Structure- and dimensionality-dependent properties for photo(electro)chemical energy conversion and storage. Adv. Energy Mater. 2022, 12, 2101078.

8

Khan, M. S.; Zhang, F. K.; Osada, M.; Mao, S. S.; Shen, S. H. Graphitic carbon nitride-based low-dimensional heterostructures for photocatalytic applications. Solar RRL 2020, 4, 1900435.

9

Lin, L. H.; Hisatomi, T.; Chen, S. S.; Takata, T.; Domen, K. Visible-light-driven photocatalytic water splitting: Recent progress and challenges. Trends Chem. 2020, 2, 813–824.

10

Lin, L. H.; Ou, H.; Zhang, Y. F.; Wang, X. C. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016, 6, 3921–3931.

11

Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

12

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

13

Guo, F. S.; Hu, B.; Yang, C.; Zhang, J. S.; Hou, Y. D.; Wang, X. C. On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv. Mater. 2021, 33, 2101466.

14

An, S. F.; Zhang, G. H.; Li, K. Y.; Huang, Z. N.; Wang, X.; Guo, Y. K.; Hou, J. G.; Song, C. S.; Guo, X. W. Self-supporting 3D carbon nitride with tunable n→π* electronic transition for enhanced solar hydrogen production. Adv. Mater. 2021, 33, 2104361.

15

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

16

Malik, R.; Tomer, V. K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sust. Energy Rev. 2021, 135, 110235.

17

Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385–2389.

18

Liu, G. M.; Lv, H. Q.; Zeng, Y. B.; Yuan, M. Z.; Meng, Q. G.; Wang, Y. H.; Wang, C. Y. Single-atom Pd-N3 sites on carbon-deficient g-C3N4 for photocatalytic H2 evolution. Trans. Tianjin Univ. 2021, 27, 139–146.

19

Zhang, G. G.; Lin, L. H.; Li, G. S.; Zhang, Y. F.; Savateev, A.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Ionothermal synthesis of triazine-heptazine-based copolymers with apparent quantum yields of 60% at 420 nm for solar hydrogen production from “sea water”. Angew. Chem., Int. Ed. 2018, 57, 9372–9376.

20

Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 2020, 3, 649–655.

21

Lau, V. W. H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165.

22

Kröger, J.; Jiménez-Solano, A.; Savasci, G.; Rovó, P.; Moudrakovski, I.; Küster, K.; Schlomberg, H.; Vignolo-González, H. A.; Duppel, V.; Grunenberg, L. et al. Interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: Melamine functionalized poly(heptazine imide). Adv. Energy Mater. 2021, 11, 2003016.

23

Pan, Z. M.; Zhao, M.; Zhuzhang, H.; Zhang, G. G.; Anpo, M.; Wang, X. C. Gradient Zn-doped poly heptazine imides integrated with a van der waals homojunction boosting visible light-driven water oxidation activities. ACS Catal. 2021, 11, 13463–13471.

24
ChenZ. P.SavateevA.PronkinS.PapaefthimiouV.WolffC.WillingerM. G.WillingerE.NeherD.AntoniettiM.DontsovaD. “The Easier the Better” preparation of efficient photocatalysts-metastable poly(heptazine imide) saltsAdv. Mater.201729170055510.1002/adma.201700555

Chen, Z. P.; Savateev, A.; Pronkin, S.; Papaefthimiou, V.; Wolff, C.; Willinger, M. G.; Willinger, E.; Neher, D.; Antonietti, M.; Dontsova, D. “The Easier the Better” preparation of efficient photocatalysts-metastable poly(heptazine imide) salts. Adv. Mater. 2017, 29, 1700555.

25

Wu, S.; Yu, H. T.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380–14389.

26

Kröger, J.; Podjaski, F.; Savasci, G.; Moudrakovski, I.; Jiménez-Solano, A.; Terban, M. W.; Bette, S.; Duppel, V.; Joos, M.; Senocrate, A. et al. Conductivity mechanism in ionic 2D carbon nitrides: From hydrated ion motion to enhanced photocatalysis. Adv. Mater. 2022, 34, 2107061.

27

Godin, R.; Wang, Y. Q.; Zwijnenburg, M. A.; Tang, J. W.; Durrant, J. R. Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 2017, 139, 5216–5224.

28

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

29

Xiong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.

30

Xiao, Y. T.; Tian, G. H.; Li, W.; Xie, Y.; Jiang, B. J.; Tian, C. G.; Zhao, D. Y.; Fu, H. G. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 2508–2515.

31

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

32
WuB. G.ZhangL. P.JiangB. J.LiQ.TianC. G.XieY.LiW. Z. Fu, H. G. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidationAngew. Chem., Int. Ed.2021604815482210.1002/anie.202013753

Wu, B. G.; Zhang, L. P.; Jiang, B. J.; Li, Q.; Tian, C. G.; Xie, Y.; Li, W. Z. Fu, H. G. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew. Chem., Int. Ed. 2021, 60, 4815–4822.

33

Krivtsov, I.; Mitoraj, D.; Adler, C.; Ilkaeva, M.; Sardo, M.; Mafra, L.; Neumann, C.; Turchanin, A.; Li, C. Y.; Dietzek, B. et al. Water-soluble polymeric carbon nitride colloidal nanoparticles for highly selective quasi-homogeneous photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 487–495.

34

Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

35

Kim, S.; Ju, M.; Lee, J.; Hwang, J.; Lee, J. Polymer interfacial self-assembly guided two-dimensional engineering of hierarchically porous carbon nanosheets. J. Am. Chem. Soc. 2020, 142, 9250–9257.

36

Grill, L.; Hecht, S. Covalent on-surface polymerization. Nat. Chem. 2020, 12, 115–130.

37

Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

38

Zwaneveld, N. A. A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 2008, 130, 6678–6679.

39

Savateev, A.; Pronkin, S.; Willinger, M. G.; Antonietti, M.; Dontsova, D. Towards organic zeolites and inclusion catalysts: Heptazine imide salts can exchange metal cations in the solid state. Chem. Asian J. 2017, 12, 1517–1522.

40

Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem., Int. Ed. 2021, 60, 25546–25550.

41

Ran, J. R.; Guo, W. W.; Wang, H. L.; Zhu, B. C.; Yu, J. G.; Qiao, S. Z. Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128.

42

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

43

Wu, F.; Liu, Y. F.; Yu, G. X.; Shen, D. F.; Wang, Y. L.; Kan, E. J. Visible-light-absorption in graphitic C3N4 bilayer: Enhanced by interlayer coupling. J. Phys. Chem. Lett. 2012, 3, 3330–3334.

44

Xu, Y. S.; Qiu, C. T.; Fan, X.; Xiao, Y. H.; Zhang, G. Q.; Yu, K. Y.; Ju, H. X.; Ling, X.; Zhu, Y. F.; Su, C. L. K+-induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H2 evolution and hydrogenation of alkenes. Appl. Catal. B: Environ. 2020, 268, 118457.

45

Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

46

Zhao, Y. B.; Zhang, P.; Yang, Z. C.; Li, L. N.; Gao, J. Y.; Chen, S.; Xie, T. F.; Diao, C. Z.; Xi, S. B.; Xiao, B. B. et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nat. Commun. 2021, 12, 3701.

47

Meng, N. N.; Ren, J.; Liu, Y.; Huang, Y.; Petit, T.; Zhang, B. Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy Environ. Sci. 2018, 11, 566–571.

48

Lee, V.; Whittaker, L.; Jaye, C.; Baroudi, K. M.; Fischer, D. A.; Banerjee, S. Large-area chemically modified graphene films: Electrophoretic deposition and characterization by soft X-ray absorption spectroscopy. Chem. Mater. 2009, 21, 3905–3916.

49

Lin, L. H.; Wang, C.; Ren, W.; Ou, H. H.; Zhang, Y. F.; Wang, X. C. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. Chem. Sci. 2017, 8, 5506–5511.

50

Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.

51

Huang, C. F.; Wen, Y. P.; Ma, J.; Dong, D. D.; Shen, Y. F.; Liu, S. Q.; Ma, H. B.; Zhang, Y. J. Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nat. Commun. 2021, 12, 320.

52

Zhao, Y. C.; Liu, Z.; Chu, W. G.; Song, L.; Zhang, Z. X.; Yu, D. L.; Tian, Y. J.; Xie, S. S.; Sun, L. F. Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor. Adv. Mater. 2008, 20, 1777–1781.

53

Yang, Y. L.; Wang, S. C.; Jiao, Y. L.; Wang, Z. L.; Xiao, M.; Du, A. J.; Li, Y. L.; Wang, J. S.; Wang, L. Z. An unusual red carbon nitride to boost the photoelectrochemical performance of wide bandgap photoanodes. Adv. Funct. Mater. 2018, 28, 1805698.

54

Dong, G.; Qiu, P.; Chen, Q. Z.; Huang, C.; Chen, F. Y.; Liu, X. Q.; Li, Z.; Wang, Y.; Zhao, Y. L. K+-Intercalated carbon nitride with electron storage property for high-efficiency visible light driven nitrogen fixation. Chem. Eng. J. 2022, 433, 133573.

55

Wang, W. K.; Zhang, H. M.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Sun, C. H.; Zhao, H. J. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-light-driven photocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 16644–16650.

56

Wu, M.; Yan, J. M.; Tang, X. N.; Zhao, M.; Jiang, Q. Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution. ChemSusChem 2014, 7, 2654–2658.

57

Zhang, G. G.; Li, G. S.; Heil, T.; Zafeiratos, S.; Lai, F. L.; Savateev, A.; Antonietti, M.; Wang, X. C. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 3433–3437.

58

She, X. J.; Wu, J. J.; Zhong, J.; Xu, H.; Yang, Y. C.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D. L.; Li, H. M. et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 2016, 27, 138–146.

59

Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Gong, Y.; Liu, K. L.; Xu, C. F.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. F. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703–709.

60

Jing, L. Q.; Qu, Y. C.; Wang, B. Q.; Li, S. D.; Jiang, B. J.; Yang, L. B.; Fu, W.; Fu, H. G.; Sun, J. Z. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773–1787.

61

Yost, B. T.; Cushing, S. K.; Meng, F. K.; Bright, J.; Bas, D. A.; Wu, N. Q.; Bristow, A. D. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 31039–31043.

62

Cushing, S. K.; Meng, F. K.; Zhang, J. Y.; Ding, B. F.; Chen, C. K.; Chen, C. J.; Liu, R. S.; Bristow, A. D.; Bright, J.; Zheng, P. et al. Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. ACS Catal. 2017, 7, 1742–1748.

63

Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem., Int. Ed. 2020, 59, 6224–6229.

64

Rieth, A. J.; Qin, Y. Z.; Martindale, B. C. M.; Nocera, D. G. Long-lived triplet excited state in a heterogeneous modified carbon nitride photocatalyst. J. Am. Chem. Soc. 2021, 143, 4646–4652.

65

Lau, V. W. H.; Mesch, M. B.; Duppel, V.; Blum, V.; Senker, J.; Lotsch, B. V. Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 1064–1072.

66

Peng, J. B.; Cao, D. Y.; He, Z. L.; Guo, J.; Hapala, P.; Ma, R. Z.; Cheng, B. W.; Chen, J.; Xie, W. J.; Li, X. Z. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 2018, 557, 701–705.

67

Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.

68

Gonella, G.; Backus, E. H. G.; Nagata, Y.; Bonthuis, D. J.; Loche, P.; Schlaich, A.; Netz, R. R.; Kühnle, A.; McCrum, I. T.; Koper, M. T. M. et al. Water at charged interfaces. Nat. Rev. Chem. 2021, 5, 466–485.

69

Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

70

Li, X. D.; Su, Q.; Liu, Z. Q.; Luo, K. X.; Li, G. H.; Wu, Q. L. A triformylphloroglucinol-based covalent organic polymer: Synthesis, characterization and its application in visible-light-driven oxidative coupling reactions of primary amines. Chem. Res. Chin. Univ. 2020, 36, 1017–1023.

File
12274_2022_4519_MOESM1_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2022
Revised: 01 May 2022
Accepted: 09 May 2022
Published: 23 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of the MOST (Nos. 2021YFA1500400 and 2018YFA0208603), the National Natural Science Foundation of China (NSFC, Nos. 21571167, 51502282, 22075266, and 21890751), and the Fundamental Research Funds for the Central Universities (Nos.WK2060190053 and WK2060190100). We acknowledge support from Hefei Science Center of Chinese Academy of Sciences, Fujian Institute of Innovation of Chinese Academy of Sciences. Y. W. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship.

Return