Journal Home > Volume 15 , Issue 9

Lithium metal is regarded as one of the most promising candidates for next-generation batteries. However, lithium dendrite formation and dead lithium accumulation are the critical problems which hinder its practical application. Herein, we constructed a flexible coating membrane layer which could effectively uniform the lithium deposition by isolating lithium metal from electrolyte and regulating the ion flux distribution. After modification, both the Li||Li symmetric cells (more than 1,400 h at 1 mA·cm−2 and 1 mAh·cm−2) and Li||Cu cells (more than 500 cycles at 0.5 mA·cm−2 and 0.5 mAh·cm−2, coulombic efficiency over 98%) deliver excellent long-cycle performance with high coulombic efficiency. The high performance is also proved in LiFePO4 (capacity retention increases from 79% to 93% at 2 C after 400 cycles) and NCM811 full cells (capacity retention from 28.5% to 78% at 2 C after 500 cycles). High electro-performance in batteries demonstrates that the multifunctional layer plays a crucial role in stabilizing lithium anode. Moreover, in order to verify the universality of the method, we have extended this facile way to fabricate other types of flexible membranes. This work offers an insight into solving the current obstacles in the application of lithium metal batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible Mg3N2 layer regulates lithium plating-striping for stable and high capacity lithium metal anodes

Show Author's information Dong Ding1Bo Zhang1Lu Wang1Jianmin Dou2Yanjun Zhai2Liqiang Xu1( )
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Collaborat Innovat Ctr Chem Energy Storage & Nove, Shandong Prov Key Lab, Liaocheng University, Liaocheng 252000, China

Abstract

Lithium metal is regarded as one of the most promising candidates for next-generation batteries. However, lithium dendrite formation and dead lithium accumulation are the critical problems which hinder its practical application. Herein, we constructed a flexible coating membrane layer which could effectively uniform the lithium deposition by isolating lithium metal from electrolyte and regulating the ion flux distribution. After modification, both the Li||Li symmetric cells (more than 1,400 h at 1 mA·cm−2 and 1 mAh·cm−2) and Li||Cu cells (more than 500 cycles at 0.5 mA·cm−2 and 0.5 mAh·cm−2, coulombic efficiency over 98%) deliver excellent long-cycle performance with high coulombic efficiency. The high performance is also proved in LiFePO4 (capacity retention increases from 79% to 93% at 2 C after 400 cycles) and NCM811 full cells (capacity retention from 28.5% to 78% at 2 C after 500 cycles). High electro-performance in batteries demonstrates that the multifunctional layer plays a crucial role in stabilizing lithium anode. Moreover, in order to verify the universality of the method, we have extended this facile way to fabricate other types of flexible membranes. This work offers an insight into solving the current obstacles in the application of lithium metal batteries.

Keywords: flexible, deposition, lithium metal battery, solid electrolyte interphase (SEI), Mg3N2

References(33)

1

Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1909887.

2

Zhang, B.; Wang, L.; Wang, B.; Zhai, Y. J.; Zeng, S. Y.; Zhang, M.; Qian, Y. T.; Xu, L. Q. Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium-sulfur batteries. Nano Res. 2022, 15, 4058–4067.

3

Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon Nanobox derived from a Prussian blue analogue as an electrode material for K-Ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

4

Dong, C. F.; Wu, L. Q.; He, Y. Y.; Zhou, Y. L.; Sun, X. P.; Du, W.; Sun, X. Q.; Xu, L. Q.; Jiang, F. Y. Willow-leaf-like ZnSe@N-Doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries. Small 2020, 16, 2004580.

5

Wu, C.; Guo, F. H.; Zhuang, L.; Ai, X. P.; Zhong, F. P.; Yang, H. X.; Qian, J. F. Mesoporous silica reinforced hybrid polymer artificial layer for high-energy and long-cycling lithium metal batteries. ACS Energy Lett. 2020, 5, 1644–1652.

6

Cui, C. Y.; Yang, C. Y.; Eidson, N.; Chen, J.; Han, F. D.; Chen, L.; Luo, C.; Wang, P. F.; Fan, X. L.; Wang, C. S. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 2020, 32, 1906427.

7

Meng, Q. Q.; Zhang, H. M.; Liu, Y.; Huang, S. B.; Zhou, T. Z.; Yang, X. F.; Wang, B. Y.; Zhang, W. F.; Ming, H.; Xiang, Y. et al. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. Nano Res. 2019, 12, 2919–2924.

8

Gao, R. M.; Yang, H.; Wang, C. Y.; Ye, H.; Cao, F. F.; Guo, Z. P. Fatigue-resistant interfacial layer for safe lithium metal batteries. Angew. Chem. , Int. Ed. 2021, 60, 25508–25513.

9

Wang, X. S.; Pan, Z. H.; Wu, Y.; Ding, X. Y.; Hong, X. J.; Xu, G. G.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 2019, 12, 525–529.

10

Chen, W.; Hu, Y.; Lv, W. Q.; Lei, T. Y.; Wang, X. F.; Li, Z. H.; Zhang, M.; Huang, J. W.; Du, X. C.; Yan, Y. C. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 2019, 10, 4973.

11

Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.

12

Li, P. L.; Dong, X. L.; Li, C.; Liu, J. Y.; Liu, Y.; Feng, W. L.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Anchoring an artificial solid-electrolyte interphase layer on a 3D current collector for high-performance lithium anodes. Angew. Chem., Int. Ed. 2019, 58, 2093–2097.

13

Yin, Y. C.; Wang, Q.; Yang, J. T.; Li, F.; Zhang, G. Z.; Jiang, C. H.; Mo, H. S.; Yao, J. S.; Wang, K. H.; Zhou, F. et al. Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nat. Commun. 2020, 11, 1761.

14

Yang, Q. F.; Cui, M. N.; Hu, J. L.; Chu, F. L.; Zheng, Y. J.; Liu, J. J.; Li, C. L. Ultrathin defective C-N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 2020, 14, 1866–1878.

15

Wang, T. S.; Liu, X. B.; Zhao, X. D.; He, P. G.; Nan, C. W.; Fan, L. Z. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 2020, 30, 2000786.

16

Bag, S.; Zhou, C. T.; Kim, P. J.; Pol, V. G.; Thangadurai, V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries. Energy Storage Mater. 2020, 24, 198–207.

17

Wang, G.; Chen, C.; Chen, Y. H.; Kang, X. W.; Yang, C. H.; Wang, F.; Liu, Y.; Xiong, X. H. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem., Int. Ed. 2020, 59, 2055–2060.

18

Li, J. H.; Cai, Y. F.; Wu, H. M.; Yu, Z. A.; Yan, X. Z.; Zhang, Q. H.; Gao, T. Z.; Liu, K.; Jia, X. D.; Bao, Z. N. Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003239.

19

Baloch, M.; Shanmukaraj, D.; Bondarchuk, O.; Bekaert, E.; Rojo, T.; Armand, M. Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in Sulphur batteries. Energy Storage Mater. 2017, 9, 141–149.

20

Lei, M. N.; Wang, J. G.; Ren, L. B.; Nan, D.; Shen, C.; Xie, K. Y.; Liu, X. R. Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 30992–30998.

21

Lei, M. N.; You, Z. Y.; Ren, L. B.; Liu, X. R.; Wang, J. G. Construction of copper oxynitride nanoarrays with enhanced lithiophilicity toward stable lithium metal anodes. J. Power Sources 2020, 463, 228191.

22

Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E. A.; Bahrami, B.; He, Q. Q.; Qiao, H.; Smirnova, A. L.; Wu, J. J.; Qiao, Q. Q. et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Mater. 2019, 18, 389–396.

23

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

24

Hu, J. Q.; Bando, Y.; Zhan, J. H.; Zhi, C. Y.; Golberg, D. Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires. Nano Lett. 2006, 6, 1136–1140.

25

Piao, N.; Liu, S. F.; Zhang, B.; Ji, X.; Fan, X. L.; Wang, L.; Wang, P. F.; Jin, T.; Liou, S. C.; Yang, H. C. et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021, 6, 1839–1848.

26

Dong, Q. Y.; Hong, B.; Fan, H. L.; Jiang, H.; Zhang, K.; Lai, Y. Q. Inducing the formation of in situ Li3N-Rich SEI via nanocomposite plating of Mg3N2 with lithium enables high-performance 3D lithium-metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 627–636.

27

Khairallah, F.; Glisenti, A. XPS study of MgO nanopowders obtained by different preparation procedures. Surf. Sci. Spectra 2006, 13, 58–71.

28

Li, X. T.; Han, X. Q.; Zhang, H. R.; Hu, R. X.; Du, X. F.; Wang, P.; Zhang, B. T.; Cui, G. L. Frontier orbital energy-customized ionomer-based polymer electrolyte for high-voltage lithium metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 51374–51386.

29

Langdon, J.; Manthiram, A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes. Adv. Funct. Mater. 2021, 31, 2010267.

30

Lin, L. D.; Suo, L. M.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery. Adv. Energy Mater. 2021, 11, 2003709.

31

Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

32

Westover, A. S.; Sacci, R. L.; Dudney, N. Electroanalytical measurement of interphase formation at a Li metal-solid electrolyte interface. ACS Energy Lett. 2020, 5, 3860–3867.

33

Huang, H. F.; Gui, Y. N.; Sun, F.; Liu, Z. J.; Ning, H. L.; Wu, C.; Chen, L. B. In situ formed three-dimensional (3D) lithium-boron (Li-B) alloy as a potential anode for next-generation lithium batteries. Rare Metals 2021, 40, 3494–3500.

File
12274_2022_4516_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2022
Revised: 14 April 2022
Accepted: 09 May 2022
Published: 06 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (No. 22071135), the Academy of Sciences large apparatus United Fund (No. U1832187), and the Nature Science Foundation of Shandong Province (No. ZR2019MEM030).

Return