Journal Home > Volume 15 , Issue 8

Recent research efforts in the field of electromagnetic interference shielding (EMI) materials have focused on biomass as a green and sustainable resource. More specifically, wood and cellulose nano fiber (CNF) have many advantages, some of which include lightweight, porosity, widespread availability, low cost, and easy processing. These favorable properties have led researchers to consider these types of biomass as an EMI shielding material with great potential. At present, while many excellent published works in EMI shielding materials have investigated wood and CNF, this research area is still new, compared with non-biomass EMI shielding materials. More specifically, there is still a lack of in-depth research and summary on the preparation process, pore structure regulation, component optimization, and other factors affecting the EMI shielding of wood and CNF based EMI shielding materials. Thus, this review paper presents a comprehensive summary of recent research on wood and CNF based EMI shielding materials in recent three years in terms of the preparation methods, material structure design, component synergy, and EMI mechanism, and a forward future perspective for existing problems, challenges, and development trend. The ultimate goal is to provide a comprehensive and informative reference for the further development and exploration of biomass EMI shielding materials.


menu
Abstract
Full text
Outline
About this article

Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources

Show Author's information Chuanyin Xiong1( )Tianxu Wang1Yongkang Zhang1Meng Zhu1Yonghao Ni1,2
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Limerick Pulp & Paper Ctr, University of New Brunswick, Fredericton, NB E3B 5A3, Canada

Abstract

Recent research efforts in the field of electromagnetic interference shielding (EMI) materials have focused on biomass as a green and sustainable resource. More specifically, wood and cellulose nano fiber (CNF) have many advantages, some of which include lightweight, porosity, widespread availability, low cost, and easy processing. These favorable properties have led researchers to consider these types of biomass as an EMI shielding material with great potential. At present, while many excellent published works in EMI shielding materials have investigated wood and CNF, this research area is still new, compared with non-biomass EMI shielding materials. More specifically, there is still a lack of in-depth research and summary on the preparation process, pore structure regulation, component optimization, and other factors affecting the EMI shielding of wood and CNF based EMI shielding materials. Thus, this review paper presents a comprehensive summary of recent research on wood and CNF based EMI shielding materials in recent three years in terms of the preparation methods, material structure design, component synergy, and EMI mechanism, and a forward future perspective for existing problems, challenges, and development trend. The ultimate goal is to provide a comprehensive and informative reference for the further development and exploration of biomass EMI shielding materials.

Keywords: electromagnetic interference shielding, biomass materials, wood and nano cellulose fiber, pore structure regulation, component synergy

References(191)

1

Srivastava, S. K.; Manna, K. Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review. J. Mater. Chem. A 2022, 10, 7431–7496.

2

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

3

Zhao, H.; Yun, J.; Zhang, Y. L.; Ruan, K. P.; Huang, Y. S.; Zheng, Y. P.; Chen, L. X.; Gu, J. W. Pressure-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities. ACS Appl. Mater. Interfaces 2022, 14, 3233–3243.

4
Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res., in press, https://doi.org/10.1007/s12274-022-4428-x.
DOI
5

Gu, J. W.; Xu, S.; Zhuang, Q.; Tang, Y. S.; Kong, J. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE Trans. Dielect. Elect. Insul. 2017, 24, 784–790.

6

Dilli, R. Implications of mm wave radiation on human health: State of the art threshold levels. IEEE Access 2021, 9, 13009–13021.

7

Yoo, Y. J.; Heo, S. Y.; Kim, Y. J.; Ko, J. H.; Mira, Z. F.; Song, Y. M. Functional photonic structures for external interaction with flexible/wearable devices. Nano Res. 2021, 14, 2904–2918.

8

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

9

Liang, C. B.; He, J.; Zhang, Y. L.; Zhang, W.; Liu, C. L.; Ma, X. T.; Liu, Y. Q.; Gu, J. W. MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci Technol. 2022, 224, 109445.

10

Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

11

Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. G.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

12

Zhao, J.; Lu, Y. J.; Ye, W. L.; Wang, L.; Liu, B.; Lv, S. S.; Chen, L. X.; Gu, J. W. Enhanced wave-absorbing performances of silicone rubber composites by incorporating C–SnO2–MWCNT absorbent with ternary heterostructure. Ceram. Int. 2019, 45, 20282–20289.

13

Xiong, C. Y.; Li, M. R.; Han, Q.; Zhao, W.; Dai, L.; Ni, Y. H. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances. J. Mater. Sci. Technol. 2022, 97, 190–200.

14

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

15

Liu, C.; Cai, J.; Dang, P. Z.; Li, X. H.; Zhang, D. Y. Highly stretchable electromagnetic interference shielding materials made with conductive microcoils confined to a honeycomb structure. ACS Appl. Mater. Interfaces 2020, 12, 12101–12108.

16

Zhang, W. B.; Wei, L. F.; Ma, Z. L.; Fan, Q. Q.; Ma, J. Z. Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 2021, 177, 412–426.

17

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

18

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

19

Jia, L. C.; Jia, X. X.; Sun, W. J.; Zhang, Y. P.; Xu, L.; Yan, D. X.; Su, H. J.; Li, Z. M. Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 53230–53238.

20

Wang, L.; Qiu, H.; Liang, C. B.; Song, P.; Han, Y. X.; Han, Y. X.; Gu, J. W.; Kong, J.; Pan, D.; Guo, Z. H. Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 2019, 141, 506–514.

21

Zhang, M. K.; Zhang, P. J.; Zhang, C. L.; Wang, Y. S.; Chang, H.; Rao, W. Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl. Mater. Today 2020, 19, 100612.

22

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

23

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

24

Yu, D. H.; Liao, Y.; Song, Y. C.; Wang, S. L.; Wan, H. Y.; Zeng, Y. H.; Yin, T.; Yang, W. H.; He, Z. Z. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 2020, 7, 2000177.

25

Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670.

26

Budumuru, S.; Anuradha, M. S. Electromagnetic shielding and mechanical properties of AL6061 metal matrix composite at X-band for oblique incidence. Adv. Compos. Hybrid Mater. 2021, 4, 1113–1121.

27

Zhao, J.; Zhang, J. L.; Wang, L.; Li, J. K.; Feng, T.; Fan, J. C.; Chen, L. X.; Gu, J. W. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 2020, 22, 100486.

28

Liu, H. Z.; Xu, Y.; Zhao, X. D.; Han, D.; Zhao, F.; Yang, Q. W. Lightweight leaf-structured carbon nanotubes/graphene foam and the composites with polydimethylsiloxane for electromagnetic interference shielding. Carbon 2022, 191, 183–194.

29

Wang, L.; Shi, X. T.; Zhang, J. L.; Zhang, Y. L.; Gu, J. W. Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 2020, 52, 119–126.

30

Yang, R. L.; Gui, X. C.; Yao, L.; Hu, Q. M.; Yang, L. L.; Zhang, H.; Yao, Y. T.; Mei, H.; Tang, Z. K. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 66.

31

Liang, C. B.; Song, P.; Ma, A. J.; Shi, X. T.; Gu, H. B.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. W. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 2019, 181, 107683.

32

Wang, P.; Guo, B.; Zhang, Z.; Gao, W. N.; Zhou, W.; Ma, H. X.; Wu, W. Y.; Han, J. F.; Zhang, R. J. Eco-friendly non-acid intercalation and exfoliation of graphite to graphene nanosheets in the binary-peroxidant system for EMI shielding. Chin. Chem. Lett. 2021, 32, 3469–3473.

33

Zhao, J.; Zhang, J. L.; Wang, L.; Lyu, S.; Ye, W. L.; Xu, B. B.; Qiu, H.; Chen, L. X.; Gu, J. W. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105714.

34

Zuo, S. D.; Liang, Y. Y.; Yang, H. Z.; Ma, X. X.; Ge, S. B.; Wu, Y. J.; Fei, B. H.; Guo, M.; Ahamad, T.; Le, H. S. et al. High strength composites of carbon fiber sheets-veneers sandwich-structure for electromagnetic interference shielding materials. Prog. Org. Coat. 2022, 165, 106736.

35

Liang, C. B.; Qiu, H.; Han, Y. Y.; Gu, H. B.; Song, P.; Wang, L.; Kong, J.; Cao, D. P.; Gu, J. W. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733.

36

Wang, Z.; Kong, Q. Q.; Yi, Z. L.; Xie, L. J.; Jia, H.; Chen, J. P.; Liu, D.; Jiang, D.; Chen, C. M. Electromagnetic interference shielding material for super-broadband: Multi-walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure. J. Mater. Chem. A 2021, 9, 25999–26009.

37

Song, P.; Liang, C. B.; Wang, L.; Qiu, H.; Gu, H. B.; Kong, J.; Gu, J. W. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 2019, 181, 107698.

38

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

39

Duan, H. J.; Zhu, H. X.; Gao, J. F.; Yan, D. X.; Dai, K.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 2020, 8, 9146–9159.

40

Wang, L.; Chen, L. X.; Song, P.; Liang, C. B.; Lu, Y. J.; Qiu, H.; Zhang, Y. L.; Kong, J.; Gu, J. W. Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 2019, 171, 111–118.

41

Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, 1907499.

42

Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

43

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

44

Lai, H. R.; Bai, C. R.; Wang, Y. Q.; Fan, Z. Y.; Yuan, Y.; Too, H. Highly crosslinked conductive polymer nanofibrous films for high-rate solid-state supercapacitors and electromagnetic interference shielding. Adv. Mater. Interfaces 2022, 9, 2102115.

45

Zhang, L. K.; Chen, Y.; Liu, Q.; Deng, W. T.; Yue, Y. Q.; Meng, F. B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65.

46

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

47
Li T. Zhi D. D. Guo Z. H. Li J. Z. Chen Y. Meng F. B.  3D porous  biomass-derived  carbon  materials:  Biomass  sources, controllable transformation and microwave absorption application Green Chem. 2022 24 647 674 10.1039/d1gc02566j

Li, T.; Zhi, D. D.; Guo, Z. H.; Li, J. Z.; Chen, Y.; Meng, F. B. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application. Green Chem. 2022, 24, 647–674.

48

Liang, C. B.; Song, P.; Qiu, H.; Huangfu, Y. M.; Lu, Y. J.; Wang, L.; Kong, J.; Gu, J. W. Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105512.

49

Kang, H. L.; Luo, S.; Du, H. Y.; Han, L. S.; Li, D. H.; Li, L.; Fang, Q. H. Bio-based Eucommia ulmoides gum composites with high electromagnetic interference shielding performance. Polymers 2022, 14, 970.

50
In-situ pyrolyzed polymethylsilsesquioxanemulti-walled carbon nanotubes derived ceramic nanocomposites forelectromagnetic  wave  absorption Ceram. Int.  2019 45 11756 11764 10.1016/j.ceramint.2019.03.052

Chen, L. X.; Zhao, J.; Wang, L.; Peng, F.; Liu, H.; Zhang, J. X.; Gu, J. W.; Guo, Z. H. In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption. Ceram. Int. 2019, 45, 11756–11764.

51

Zhang, H. B.; Liu, T. T.; Huang, Z. H.; Cheng, J. Y.; Wang, H. H.; Zhang, D. Q.; Ba, X. W.; Zheng, G. P.; Yan, M.; Cao, M. S. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 2022, 8, 327–334.

52

Liang, C. B.; Song, P.; Qiu, H.; Zhang, Y. L.; Ma, X. T.; Qi, F. Q.; Gu, H. B.; Kong, J.; Cao, D. P.; Gu, J. W. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 2019, 11, 22590–22598.

53

Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

54

Wang, L.; Qiu, H.; Song, P.; Zhang, Y. L.; Lu, Y. J.; Liang, C. B.; Kong, J.; Chen, L. X.; Gu, J. W. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 2019, 123, 293–300.

55
Zachariah, S. M.; Grohens, Y.; Kalarikkal, N.; Thomas, S. Hybrid materials for electromagnetic shielding: A review. Polym. Compos., in press, https://doi.org/10.1002/pc.26595.
DOI
56

Guo, Y. Q.; Pan, L. L.; Yang, X. T.; Ruan, K. P.; Han, Y. X.; Kong, J.; Gu, J. W. Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105484.

57

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

58

Devi, N.; Ray, S. S. Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: A review. Polym. Eng. Sci. 2022, 62, 591–621.

59

Yu, J. W.; Gu, W. H.; Zhao, H. Q.; Ji, G. B. Lightweight, flexible and freestanding PVA/PEDOT: PSS/Ag NWs film for high-performance electromagnetic interference shielding. Sci. China Mater. 2021, 64, 1723–1732.

60

Zhang, Y. L.; Wang, L.; Zhang, J. L.; Song, P.; Xiao, Z. R.; Liang, C. B.; Qiu, H.; Kong, J.; Gu, J. W. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 2019, 183, 107833.

61

Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res 2022, 6743–6750.

62

Huangfu, Y. M.; Ruan, K. P.; Qiu, H.; Lu, Y. J.; Liang, C. B.; Kong, J.; Gu, J. W. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 121, 265–272.

63

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

64

Zhou, M.; Gu, W. H.; Wang, G. H.; Zheng, J.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding. J. Mater. Chem. A 2020, 8, 24267–24283.

65

Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

66

Chen, Y. M.; Yang, Y.; Xiong, Y.; Zhang, L.; Xu, W. H.; Duan, G. G.; Mei, C. T.; Jiang, S. H.; Rui, Z. H.; Zhang, K. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021, 38, 101204.

67

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

68

Liu, H. G.; Wu, S. Q.; You, C. Y.; Tian, N.; Li, Y.; Chopra, N. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 2021, 172, 569–596.

69

Gezahegn, S.; Garcia, C.; Lai, R. S.; Zhou, X. X.; Tjong, J.; Thomas, S. C.; Huang, F.; Jaffer, S.; Yang, W. M.; Sain, M. Benign species-tuned biomass carbonization to nano-layered graphite for EMI filtering and greener energy storage functions. Renew. Energy 2021, 164, 1039–1051.

70

Liu, F.; Li, Y. C.; Hao, S.; Cheng, Y.; Zhan, Y. H.; Zhang, C. M.; Meng, Y. Y.; Xie, Q.; Xia, H. S. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr. Polym. 2020, 243, 116467.

71

Jia, X. C.; Shen, B.; Chen, J. L.; Wang, G. Q.; Sun, Z. P.; Zheng, W. G. Multifunctional TPU composite foams with embedded biomass-derived carbon networks for electromagnetic interference shielding. Compos. Commun. 2022, 30, 101062.

72

Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

73

Wu, N. N.; Hu, Q.; Wei, R. B.; Mai, X. M.; Naik, N.; Pan, D.; Guo, Z. H.; Shi, Z. J. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021, 176, 88–105.

74

Liang, C. B.; Du, Y. Z.; Wang, Y. Y.; Ma, A. J.; Huang, S.; Ma, Z. L. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2021, 4, 979–988.

75

Chen, J. Q.; Zhu, Z. D.; Zhang, H.; Tian, S. L.; Fu, S. Y. Wood-derived nanostructured hybrid for efficient flame retarding and electromagnetic shielding. Mater. Des. 2021, 204, 109695.

76

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos. Part B Eng. 2020, 198, 108250.

77

Li, M. M.; Han, F. Y.; Jiang, S.; Zhang, M. L.; Xu, Q. Y.; Zhu, J. H.; Ge, A. X.; Liu, L. F. Lightweight cellulose nanofibril/reduced graphene oxide aerogels with unidirectional pores for efficient electromagnetic interference shielding. Adv. Mater. Interfaces 2021, 8, 2101437.

78

Xiong, C. Y.; Zheng, C. M.; Nie, S. G.; Qin, C. R.; Dai, L.; Xu, Y. J.; Ni, Y. H. Fabrication of reduced graphene oxide-cellulose nanofibers based hybrid film with good hydrophilicity and conductivity as electrodes of supercapacitor. Cellulose 2021, 28, 3733–3743.

79

Liu, R. T.; Wang, D. Y.; Xie, Y. J.; Li, J.; Wang, L. J. Flexible cellulose-based material with a higher conductivity and electromagnetic shielding performance from electroless nickel plating. Wood Sci. Technol. 2021, 55, 1693–1710.

80

Tran, T. T. V.; Vo, D. V. N.; Nguyen, S. T.; Vu, C. M. Silver nanowires decorated recycled cigarette filters based epoxy composites with high through-plane thermal conductivity and efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106485.

81

Xu, X. R.; Wu, S. N.; Cui, J.; Yang, L. Y.; Liu, D. Y.; Zhang, Y. Z.; Chen, X.; Wu, K.; Sun, D. P. Insights into the microstructures and reinforcement mechanism of nano-fibrillated cellulose/MXene based electromagnetic interference shielding film. Cellulose 2021, 28, 3311–3325.

82

Keplinger, T.; Wittel, F. K.; Ruggeberg, M.; Burgert, I. Wood derived cellulose scaffolds—Processing and mechanics. Adv. Mater. 2021, 33, 2001375.

83

Guo, H. T.; Chen, Y. M.; Li, Y.; Zhou, W.; Xu, W. H.; Pang, L.; Fan, X. M.; Jiang, S. H. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106309.

84

Hosseini, E.; Arjmand, M.; Sundararaj, U.; Karan, K. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields. ACS Appl. Mater. Interfaces 2020, 12, 28596–28606.

85
Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res., in press, https://doi.org/10.1007/s12274-022-4287-5.
DOI
86

Song, P.; Liu, B.; Qiu, H.; Shi, X. T.; Cao, D. P.; Gu, J. W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 100653.

87

Kamkar,M.; Ghaffarkhah, A.; Hosseini, E.; Amini, M.; Ghaderi, S.; Arjmand, M. Multilayer polymeric nanocomposites for electromagnetic interference shielding: Fabrication, mechanisms, and prospects. New J. Chem. 2021, 45, 21488.

88

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

89

Zhang, Y. L; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

90

Liang, C. B.; Liu, Y. X.; Ruan, Y. F.; Qiu, H.; Song, P.; Kong, J.; Zhang, H. B.; Gu, J. W. Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106143.

91

Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019, 1, 1640–1671.

92

Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding. Compos. Commun. 2021, 27, 100823.

93

Huangfu, Y. M.; Liang, C. B.; Han, Y. X.; Qiu, H.; Song, P.; Wang, L.; Kong, J.; Gu, J. W. Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 2019, 169, 70–75.

94

Song, P.; Qiu, H.; Wang, L.; Liu, X. Y.; Zhang, Y. L.; Zhang, J. L.; Kong, J.; Gu, J. W. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 2020, 24, e00153.

95

Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159.

96

Cao, M.; Deng, Y. X.; Xu, K.; Hao, X. F.; Hu, J. Y.; Yang, X. Research progress of new carbon based magnetic composite electromagnetic waveabsorbing materials. Acta Mater. Compos. Sin. 2020, 37, 3004–3016.

97

Pourjafar, M.; Behrooz, R.; Nayyeri, V.; Shalbafan, A. Medium density fiberboard (MDF) with efficient electromagnetic shielding: Preparation and evaluation. Bioresources 2022, 17, 1518–1532.

98

Xiong, Y.; Xu, L. L.; Yang, C. X.; Sun, Q. F.; Xu, X. J. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 2020, 8, 18863–18871.

99

Liu, X. M.; Liu, H. Q.; Xu, H. L.; Xie, W. J.; Li, M. H.; Liu, J. X.; Liu, G. Q.; Weidenkaff, A.; Riedel, R. Natural wood templated hierarchically cellular NbC/pyrolytic carbon foams as stiff, lightweight and high-performance electromagnetic shielding materials. J. Colloid Interface Sci. 2022, 606, 1543–1553.

100

Cheng, M. L.; Ren, W. L.; Li, H. X.; Bandaru, S.; Zhang, J.; Zhang, X. F. Multiscale collaborative coupling of wood-derived porous carbon modified by three-dimensional conductive magnetic networks for electromagnetic interference shielding. Compos. Part B Eng. 2021, 224, 109169.

101

Dong, S.; Tang, W. K.; Hu, P. T.; Zhao, X. G.; Zhang, X. H.; Han, J. C.; Hu, P. Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route. ACS Sustainable Chem. Eng. 2019, 7, 11795–11805.

102

Park, J.; Kwac, L. K.; Kim, H. G.; Shin, H. K. Fabrication and characterization of waste wood cellulose fiber/graphene nanoplatelet carbon papers for application as electromagnetic interference shielding materials. Nanomaterials 2021, 11, 2878.

103

Hu, H. H.; Li, Y. X.; Gao, T.; Yan, S. Y.; Wu, S. T.; Bandaru, S.; Zheng, Y.; Qin, G. W.; Zhang, X. F. Sulfur-doped wood-derived porous carbon for optimizing electromagnetic response performance. Nanoscale 2021, 13, 16084–16093.

104

Qin, G. Y.; Huang, X. X.; Yan, X.; He, Y. F.; Liu, Y. H.; Xia, L.; Zhong, B. Carbonized wood with ordered channels decorated by NiCo2O4 for lightweight and high-performance microwave absorber. J. Adv. Ceram. 2022, 11, 105–119.

105

Zhao, B.; Bai, P. W.; Wang, S.; Ji, H. Y.; Fan, B. B.; Zhang, R.; Che, R. C. High-performance joule heating and electromagnetic shielding properties of anisotropic carbon scaffolds. ACS Appl. Mater. Interfaces 2021, 13, 29101–29112.

106

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

107

Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

108

Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Wang, S. S.; Zhang, Y. L.; Gu, J. W. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 2022, 219, 109253.

109

Liang, C. B.; Qiu, H.; Song, P.; Shi, X. T.; Kong, J.; Gu, J. W. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622.

110

Zhu, M.; Yan, X. X.; Xu, H. L.; Xu, Y. J.; Kong, L. Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 2021, 182, 806–814.

111

Wang, Z. X.; Han, X. S.; Han, X. W.; Chen, Z. B.; Wang, S. J.; Pu, J. W. MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohydr. Polym. 2021, 254, 117033.

112

Zhou, T. Y.; Xu, C.; Liu, H. P.; Wei, Q. W.; Wang, H.; Zhang, J. G.; Zhao, T.; Liu, Z. B.; Zhang, X. F.; Zeng, Y. et al. Second time-scale synthesis of high-quality graphite films by quenching for effective electromagnetic interference shielding. ACS Nano 2020, 14, 3121–3128.

113

Chithra, A.; Wilson, P.; Vijayan, S.; Rajeev, R.; Prabhakaran, K. Carbon foams with low thermal conductivity and high EMI shielding effectiveness from sawdust. Ind. Crops Prod. 2020, 145, 112076.

114

Tang, R. B.; Xu, P.; Dong, J. W.; Gui, H. G.; Zhang, T.; Ding, Y. S.; Murugadoss, V.; Naik, N.; Pan, D.; Huang, M. N. et al. Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. Carbon 2022, 188, 492–502.

115

Wei, Q. W.; Pei, S. F.; Qian, X. T.; Liu, H. P.; Liu, Z. B.; Zhang, W. M.; Zhou, T. Y.; Zhang, Z. C.; Zhang, X. F.; Cheng, H. M. et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 2020, 32, 1907411.

116

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

117

Ying, M. F.; Zhao, R. Z.; Hu, X.; Zhang, Z. H.; Liu, W. W.; Yu, J. Y.; Liu, X. L.; Liu, X. G.; Rong, H. W.; Wu, C. et al. Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem., Int. Ed. 2022, 61, e202201323.

118

Li, J.; Li, Y. X.; Yang, L. Y.; Yin, S. G. Ti3C2Tx/PANI/liquid metal composite microspheres with 3D nanoflower structure: Preparation, characterization, and applications in EMI shielding. Adv. Mater. Interfaces 2022, 9, 2102266.

119

Wu, Y. F.; Huang, K.; Weng, X. D.; Wang, R. Y.; Du, P.; Liu, J. C.; Lin, S.; Huang, K.; Yang, H. J.; Lei, M. PVB coating efficiently improves the high stability of EMI shielding fabric with Cu/Ni. Adv. Compos. Hybrid Mater. 2022, 5, 71–82.

120

Zheng, Y.; Song, Y. J.; Gao, T.; Yan, S. Y.; Hu, H. H.; Cao, F.; Duan, Y. P.; Zhang, X. F. Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 40802–40814.

121

Karim, S. S.; Murtaza, Z.; Farrukh, S.; Umer, M. A.; Ali, S. S.; Younas, M.; Mubashir, M.; Saqib, S.; Ayoub, M.; Bokhari, A. et al. Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review. Environ. Res. 2022, 205, 112402.

122

Hwang, U.; Kim, J.; Sun, H. N.; Park, I. K.; Suhr, J.; Nam, J. D. Aperture control in polymer-based composites with hybrid core–shell spheres for frequency-selective electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 8751–8760.

123
Cao, G.; Cai, S. Y.; Zhang, H.; Tian, Y. Q. High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv. Compos. Hybrid Mater., in press, https://doi.org/10.1007/s42114-021-00402-1.
DOI
124

Pavlou, C.; Carbone, M. G. P.; Manikas, A. C.; Trakakis, G.; Koral, C.; Papari, G.; Andreone, A.; Galiotis, C. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 2021, 12, 4655.

125

Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

126

Shen, Z. M.; Feng, J. C. Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustainable Chem. Eng. 2019, 7, 6259–6266.

127

Gan, W. T.; Chen, C. J.; Giroux, M.; Zhong, G.; Goyal, M. M.; Wang, Y. L.; Ping, W. W.; Song, J. W.; Xu, S. M.; He, S. M. et al. Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 2020, 32, 5280–5289.

128

Zhou, M.; Wang, J. W.; Zhao, Y.; Wang, G. H.; Gu, W. H.; Ji, G. B. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 2021, 183, 515–524.

129

Xu, H.; Li, Y.; Han, X. S.; Cai, H. Z.; Gao, F. Carbon black enhanced wood-plastic composites for high-performance electromagnetic interference shielding. Mater. Lett. 2021, 285, 129077.

130

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem. Eng. J. 2021, 405, 126927.

131

Wang, Z. X.; Han, X. S.; Zhou, Z. J.; Meng, W. Y.; Han, X. W.; Wang, S. J.; Pu, J. W. Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 2021, 213, 108931.

132

Liu, S.; Sheng, M. J.; Wu, H.; Shi, X. T.; Lu, X.; Qu, J. P. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities. J. Mater. Sci. Technol. 2022, 113, 147–157.

133

Liu, J.; Zhang, H. B.; Liu, Y. F.; Wang, Q. W.; Liu, Z. S.; Mai, Y. W.; Yu, Z. Z. Magnetic, electrically conductive and lightweight graphene/iron pentacarbonyl porous films enhanced with chitosan for highly efficient broadband electromagnetic interference shielding. Compos. Sci. Technol. 2017, 151, 71–78.

134

Zeng, Z. H.; Wang, C. X.; Zhang, Y. F.; Wang, P. Y.; Shahabadi, S. I. S.; Pei, Y. M.; Chen, M. J.; Lu, X. H. Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2018, 10, 8205–8213.

135

Pei, X. Y.; Zhao, M. Y.; Li, R. X.; Lu, H.; Yu, R. R.; Xu, Z. W.; Li, D. S.; Tang, Y. H.; Xing, W. J. Porous network carbon nanotubes/chitosan 3D printed composites based on ball milling for electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106363.

136
Wei, Y. Y.; Dai, Z. H.; Zhang, Y. F.; Zhang, W. W.; Gu, J.; Hu, C. S.; Lin, X. Y. Multifunctional waterproof MXene-coated wood with high electromagnetic shielding performance. Cellusole, in press., https://doi.org/10.1007/s10570-022-04609-3.
DOI
137

Cheng, Z.; Wei, Y. Y.; Liu, C.; Chen, Y.; Ma, Y.; Chen, H. H.; Liang, X. F.; Sun, N. X.; Zhu, H. L. Lightweight and construable magnetic wood for electromagnetic interference shielding. Adv. Eng. Mater. 2020, 22, 2000257.

138

Jiang, Y. Q.; Ru, X. L.; Che, W. B.; Jiang, Z. H.; Chen, H. L.; Hou, J. F.; Yu, Y. M. Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. Part B Eng. 2022, 229, 109460.

139

Wei, Y. Y.; Liang, D. D.; Zhou, H. Y.; Huang, S. J.; Zhang, W. W.; Gu, J.; Hu, C. S.; Lin, X. Y. Facile preparation of MXene-decorated wood with excellent electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 2022, 153, 106739.

140

Huang, J. X.; Wan, H. J.; Li, M.; Zhang, Y. M.; Zhu, J. F.; Li, X. L.; Shui, W. C.; Li, Y.; Fan, X. M.; Wen, Q. Y. et al. In-situ growth of MAX phase coatings on carbonised wood and their terahertz shielding properties. J. Adv. Ceram. 2021, 10, 1291–1298.

141
 CNT@PDMS/NWcomposite  materials  with  superior  electromagnetic  shielding Holzforschung 2022 76 299 304 10.1515/hf-2021-0132

Zhou, Z. J.; Wang, Z. X.; Han, X. S.; Pu, J. W. CNT@PDMS/NW composite materials with superior electromagnetic shielding. Holzforschung 2022, 76, 299–304.

142

Zheng, T.; Sabet, S. M.; Pilla, S. Polydopamine coating improves electromagnetic interference shielding of delignified wood-derived carbon scaffold. J. Mater. Sci. 2021, 56, 10915–10925.

143
Gao, T.; Ma, Y.; Ji, L. Z.; Zheng, Y.; Yan, S. Y.; Li, Y. X.; Zhang, X. F. Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater., in press, https://doi.org/10.1007/s42114-022-00420-7.
DOI
144

Chen, Y. P.; Dang, B. K.; Fu, J. Z.; Wang, C.; Li, C. C.; Sun, Q. F.; Li, H. Q. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 2021, 21, 397–404.

145

Lu, H. C.; Xia, Z. H.; Mi, Q. Y.; Zhang, J. M.; Zheng, X. J.; He, Z. Y.; Wu, J.; Zhang, J. Cellulose-based conductive films with superior joule heating performance, electromagnetic shielding efficiency, and high stability by in situ welding to construct a segregated MWCNT conductive network. Ind. Eng. Chem. Res. 2022, 61, 1773–1785.

146

Li, Y. H.; Chen, Y. A.; He, X. F.; Xiang, Z. Y.; Heinze, T.; Qi, H. S. Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chem. Eng. J. 2022, 431, 133907.

147

Zhan, Y. H.; Meng, Y. Y.; Xie, Q. Simple approach to fabricate MXene/cellulose paper for electromagnetic interference shielding applications. J. Appl. Polym. Sci. 2021, 138, 50597.

148

Huang, J. J.; Wang, T.; Su, Y. M.; Ding, Y. L.; Tu, C. Y.; Li, W. M. Hydrophobic MXene/hydroxyethyl cellulose/silicone resin composites with electromagnetic interference shielding. Adv. Mater. Interfaces 2021, 8, 2100186.

149

Zhang, F. D.; Ren, P. G.; Guo, H.; Zhang, Z. P.; Guo, Z. Z.; Dai, Z.; Lu, Z. X.; Jin, Y. L.; Ren, F. Flexible and conductive cellulose composite paper for highly efficient electromagnetic interference shielding. Adv. Electron. Mater. 2021, 7, 2100496.

150
Li, M. M.; Zhao, Y. J.; Zhang, M. L.; Jiang, S.; Farooq, A.; Liu, L. Y.; Ge, A. X.; Liu, L. F. Recent progress in the application of cellulose in electromagnetic interference shielding materials. Macromol. Mater. Eng., in press, https://doi.org/10.1002/mame.202100899.
DOI
151

Li, M. M.; Zhang, M. L.; Zhao, Y. J.; Jiang, S.; Xu, Q. Y.; Han, F. Y.; Zhu, Z. H.; Liu, L. F.; Ge, A. X. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding. Carbohyd. Polym. 2022, 286, 119306.

152

Zhou, Z. H.; Liang, Y.; Huang, H. D.; Li, L.; Yang, B.; Li, M. Z.; Yan, D. X.; Lei, J.; Li, Z. M. Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 2019, 152, 316–324.

153

Qian, K. P.; Zhou, Q. F.; Wu, H. M.; Fang, J. H.; Miao, M.; Yang, Y. H.; Cao, S. M.; Shi, L. Y.; Feng, X. Carbonized cellulose microsphere@void@MXene composite films with egg–box structure for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106229.

154

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

155

Wu, N.; Zeng, Z. H.; Kummer, N.; Han, D. X.; Zenobi, R.; Nyström, G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 2021, 5, 2100889.

156

Jin, K. X.; Xing, J. X.; Liu, X. E.; Jiang, Z. H.; Yang, S. M.; Yang, X.; Ma, J. F. Manipulating the assembly of the CNC/RGO composite film for superior electromagnetic interference shielding properties. J. Mater. Chem. A 2021, 9, 26999–27009.

157

Wan, Y. Z.; Xiong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L. et al. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 2021, 15, 8439–8449.

158

Wang, Q. L.; Tang, J.; Xiao, S. L.; Wang, M.; Shi, S. Q. Natural fiber-based composites with high hydrophobic, magnetic, and EMI shielding properties via iron oxide in situ synthesis and copper film deposition. BioResources 2020, 15, 8384–8402.

159

Zeng, Z. H.; Wang, C. X.; Wu, T. T.; Han, D. X.; Luković, M.; Pan, F.; Siqueira, G.; Nyström, G. Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 2020, 8, 17969–17979.

160

Guan, Q. F.; Han, Z. M.; Yang, K. P.; Yang, H. B.; Ling, Z. C.; Yin, C. H.; Yu, S. H. Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 2021, 21, 2532–2537.

161

Zhu, G.; Isaza, L. G.; Huang, B.; Dufresne, A. Multifunctional nanocellulose/carbon nanotube composite aerogels for high-efficiency electromagnetic interference shielding. ACS Sustainable Chem. Eng. 2022, 10, 2397–2408.

162

Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

163

Cheng, J. Y.; Li, C. B.; Xiong, Y. F.; Zhang, H. B.; Raza, H.; Ullah, S.; Wu, J. Y.; Zheng, G. P.; Cao, Q.; Zhang, D. Q. et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 2022, 14, 80.

164

Chen, Y. M.; Pang, L.; Li, Y.; Luo, H.; Duan, G. G.; Mei, C. T.; Xu, W. H.; Zhou, W.; Liu, K. M.; Jiang, S. H. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105960.

165

Liang, C. B.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl. Mater. Interfaces 2020, 12, 18023–18031.

166

Wang, D. Y.; Liu, R. T.; Xie, Y. J.; Li, J.; Wang, L. J. Fabrication of a laminated felt-like electromagnetic shielding material based on nickel-coated cellulose fibers via self-foaming effect in electroless plating process. Int. J. Biol. Macromol. 2020, 154, 954–961.

167

Hong, S.; Yoo, S. S.; Lee, J. Y.; Yoo, P. J. Sonochemically activated synthesis of gradationally complexed Ag/TEMPO-oxidized cellulose for multifunctional textiles with high electrical conductivity, super-hydrophobicity, and efficient EMI shielding. J. Mater. Chem. C 2020, 8, 13990–13998.

168

Zhu, M.; Yan, X. X.; Lei, Y. T.; Guo, J. H.; Xu, Y. J.; Xu, H. L.; Dai, L.; Kong, L. An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 14520–14531.

169

Zhang, Y.; Yu, J.; Lu, J. Y.; Zhu, C. J.; Qi, D. M. Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J. Alloys Compd. 2021, 870, 159442.

170

Wang, J.; Zhu, X. B.; Xiong, P. X.; Tu, J. P.; Yang, Z. W.; Yao, F. L.; Gama, M.; Zhang, Q. C.; Luo, H. L.; Wan, Y. Z. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 960–968.

171

Parit, M.; Du, H. S.; Zhang, X. Y.; Prather, C.; Adams, M.; Jiang, Z. H. Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym. 2020, 240, 116304.

172

Zhang, Z.; Wang, G. H.; Gu, W. H.; Zhao, Y.; Tang, S. L.; Ji, G. B. A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J. Colloid Interface Sci. 2022, 605, 193–203.

173

Wang, Y. N.; Guan, Y. P.; Liao, D. G.; He, Y. Y.; Li, S.; Zhou, L.; Yu, C. B.; Chen, Y. H.; Liu, Y. L.; Liu, H. X. Fabrication of cellulose nanofiber/reduced graphene oxide/nitrile rubber flexible films using pickering emulsion technology for electromagnetic interference shielding and piezoresistive sensor. Macromol. Mater. Eng. 2021, 306, 2100070.

174

Zhao, G. J.; Cao, X. Y.; Zhang, Q.; Deng, H.; Fu, Q. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. Mater. Today Phys. 2021, 21, 100483.

175

Yin, D. W.; Pan, Y. F.; Wang, Y.; Guo, Q.; Hu, S. Q.; Huang, J. T. Preparation and performance of electroless silver composite films based on micro-/nano-cellulose. Wood Sci. Technol. 2022, 56, 649–668.

176

Fei, Y.; Liang, M.; Yan, L. W.; Chen, Y.; Zou, H. W. Co/C@cellulose nanofiber aerogel derived from metal-organic frameworks for highly efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 392, 124815.

177

Han, G. J.; Ma, Z. G.; Zhou, B.; He, C. G.; Wang, B.; Feng, Y. Z.; Ma, J. M.; Sun, L.; Liu, C. T. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. J. Colloid Interface Sci. 2021, 583, 571–578.

178

Fei, Y.; Liang, M.; Zhou, T.; Chen, Y.; Zou, H. W. Unique carbon nanofiber@Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon 2020, 167, 575–584.

179

Chen, Y. A.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. S. Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 22088–22098.

180

Qian, Y. X.; Tao, Y.; Li, W.; Li, Y.; Xu, T.; Hao, J. N.; Jiang, Q. H.; Luo, Y. B.; Yang, J. Y. High electromagnetic wave absorption and thermal management performance in 3D CNF@C-Ni/epoxy resin composites. Chem. Eng. J. 2021, 425, 131608.

181

Li, Y.; Xue, B.; Yang, S. D.; Cheng, Z. L.; Xie, L.; Zheng, Q. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128356.

182

Cao, W. T.; Ma, C.; Tan, S.; Ma, M. G.; Wan, P. B.; Chen, F. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 2019, 11, 72.

183

Shang, Y.; Ji, Y. X.; Dong, J. W.; Yang, G.; Zhang, X. D.; Su, F. M.; Feng, Y. Z.; Liu, C. T. Sandwiched cellulose nanofiber/boron nitride nanosheet/Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Compos. Sci. Technol. 2021, 214, 108974.

184

Chen, Y. M.; Luo, H.; Guo, H. T.; Liu, K. M.; Mei, C. T.; Li, Y.; Duan, G. G.; He, S. J.; Han, J. Q.; Zheng, J. J. et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276, 118799.

185

Zhou, B.; Li, Q. T.; Xu, P. H.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388.

186

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

187
Liu, K.; Liu, W.; Li, W.; Duan, Y. X.; Zhou, K. Y.; Zhang, S.; Ni, S. Z.; Xu, T.; Du, H. S.; Si, C. L. Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater., in press, https://doi.org/10.1007/s42114-022-00425-2 .
DOI
188

Liao, S. Y.; Wang, X. Y.; Li, X. M.; Wan, Y. J.; Zhao, T.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem. Eng. J. 2021, 422, 129962.

189

Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 2020, 14, 2927–2938.

190
Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. W. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 2020, 4093732.
191

Liu, R. T.; Li, T. T.; Xu, J.; Zhang, T. C.; Xie, Y. J.; Li, J.; Wang, L. J. Sandwich-structural Ni/Fe3O4/Ni/cellulose paper with a honeycomb surface for improved absorption performance of electromagnetic interference. Carbohydr. Polym. 2021, 260, 117840.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2022
Revised: 06 May 2022
Accepted: 07 May 2022
Published: 22 June 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22078184), China Postdoctoral Science Foundation (No. 2019M653853XB), and Natural science advance research foundation of Shaanxi University of Science and Technology (No. 2018QNBJ-03).

Return