Journal Home > Volume 15 , Issue 9

The electrochemical oxygen evolution reaction (OER) is a half-reaction of water-splitting for hydrogen generation, yet suffers from its sluggish kinetics and large overpotential. It is highly desirable to develop efficient and stable OER electrocatalysts for the advancement of water-splitting. Herein, by means of density functional theory (DFT) calculations, we systematically investigated a series of two-dimensional (2D) dual-atom catalysts (DACs) on a novel synthesized covalent organic framework (COF) material as potential efficient catalysts toward the OER. The designed 6 homonuclear (2TM-COF) and 15 heteronuclear (TM1TM2-COF) DACs all exhibit good stability. There is a strong scaling relationship between the adsorption Gibbs free energies of HO* and HOO* intermediates, and the OER overpotential (ηOER) volcano curve can be plotted as a function of ΔGO* − ΔGHO*. RhIr-COF shows the best OER catalytic activity with a ηOER value of 0.29 V, followed by CoNi-COF (0.33 V), RuRh-COF (0.34 V), and NiIr-COF (0.37 V). These four OER DACs exhibit lower onset potential and higher current density than that of the IrO2(110) benchmark catalyst. Aided by the descriptor identification study, the Bader charge that correlated with the Pauling electronegativity of the embedded dual-metal atoms was found to be the most important factor governing the catalytic activity of the OER. Our work highlights a potentially efficient class of 2D COF-based DACs toward the OER.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study

Show Author's information Yanan Zhou1,§Lanlan Chen1,2,§Li Sheng3Qiquan Luo4( )Wenhua Zhang2( )Jinlong Yang1( )
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

§ Yanan Zhou and Lanlan Chen contributed equally to this work.

Abstract

The electrochemical oxygen evolution reaction (OER) is a half-reaction of water-splitting for hydrogen generation, yet suffers from its sluggish kinetics and large overpotential. It is highly desirable to develop efficient and stable OER electrocatalysts for the advancement of water-splitting. Herein, by means of density functional theory (DFT) calculations, we systematically investigated a series of two-dimensional (2D) dual-atom catalysts (DACs) on a novel synthesized covalent organic framework (COF) material as potential efficient catalysts toward the OER. The designed 6 homonuclear (2TM-COF) and 15 heteronuclear (TM1TM2-COF) DACs all exhibit good stability. There is a strong scaling relationship between the adsorption Gibbs free energies of HO* and HOO* intermediates, and the OER overpotential (ηOER) volcano curve can be plotted as a function of ΔGO* − ΔGHO*. RhIr-COF shows the best OER catalytic activity with a ηOER value of 0.29 V, followed by CoNi-COF (0.33 V), RuRh-COF (0.34 V), and NiIr-COF (0.37 V). These four OER DACs exhibit lower onset potential and higher current density than that of the IrO2(110) benchmark catalyst. Aided by the descriptor identification study, the Bader charge that correlated with the Pauling electronegativity of the embedded dual-metal atoms was found to be the most important factor governing the catalytic activity of the OER. Our work highlights a potentially efficient class of 2D COF-based DACs toward the OER.

Keywords: density functional theory (DFT), oxygen evolution reaction (OER), covalent organic framework (COF), dual-atom catalysts (DACs)

References(58)

1

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

2

Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

3

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2016, 16, 70–81.

4

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

5

Shi, Q. R.; Zhu, C. Z.; Du, D.; Lin, Y. H. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 3181–3192.

6

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

7

Zhou, Y. N.; Li, J.; Gao, X. P.; Chu, W.; Gao, G. P.; Wang, L. W. Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 9979–9999.

8

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

9

Zhao, Y. M.; Ma, D. W.; Zhang, J.; Lu, Z. S.; Wang, Y. X. Transition metal embedded C3N monolayers as promising catalysts for the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 2019, 21, 20432–20441.

10

Zhou, Y. N.; Gao, G. P.; Kang, J.; Chu, W.; Wang, L. W. Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions. J. Mater. Chem. A 2019, 7, 12050–12059.

11

Wang, Y.; Hu, F. L.; Mi, Y.; Yan, C.; Zhao, S. L. Single-metal-atom catalysts: An emerging platform for electrocatalytic oxygen reduction. Chem. Eng. J. 2021, 406, 127135.

12

Zhang, X.; Chen, A.; Zhang, Z.; Jiao, M. G.; Zhou, Z. Transition metal anchored C2N monolayers as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 11446–11452.

13

Wei, Z. X.; He, J.; Yang, Y. L.; Xia, Z. H.; Feng, Y. Z.; Ma, J. M. Fe, V-co-doped C2N for electrocatalytic N2-to-NH3 conversion. J. Energy Chem. 2021, 53, 303–308.

14

Gao, X. P.; Zhou, Y. N.; Tan, Y. J.; Liu, S. Q.; Cheng, Z. W.; Shen, Z. M. Graphyne doped with transition-metal single atoms as effective bifunctional electrocatalysts for water splitting. Appl. Surf. Sci. 2019, 492, 8–15.

15

He, T. W.; Matta, S. K.; Will, G.; Du, A. J. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods 2019, 3, 1800419.

16

Gao, X. P.; Mei, L.; Zhou, Y. N.; Shen, Z. M. Impact of electron transfer of atomic metals on adjacent graphyne layers on electrochemical water splitting. Nanoscale 2020, 12, 7814–7821.

17

Zhang, D. T.; Gong, L. L.; Ma, J.; Wang, X. W.; Zhang, L. P.; Xia, Z. H. Disperse multimetal atom-doped carbon as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions: Design strategies. J. Phys. Chem. C 2020, 124, 27387–27395.

18

Zhu, X. R.; Yan, J. X.; Gu, M.; Liu, T. Y.; Dai, Y. F.; Gu, Y. H.; Li, Y. F. Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: A combined density functional theory and machine learning study. J. Phys. Chem. Lett. 2019, 10, 7760–7766.

19

Hunter, M. A.; Fischer, J. M. T. A.; Yuan, Q. H.; Hankel, M.; Searles, D. J. Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction. ACS Catal. 2019, 9, 7660–7667.

20

Li, Z. H.; He, H. Y.; Cao, H. B.; Sun, S. M.; Diao, W. L.; Gao, D. L.; Lu, P. L.; Zhang, S. S.; Guo, Z.; Li, M. J. et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ. 2019, 240, 112–121.

21

Wang, Y; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

22

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

23

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Technol. 2022, 1, 100013.

24

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

25

Zhang, W. H.; Fu, Q.; Luo, Q. Q.; Sheng, L.; Yang, J. L. Understanding single-atom catalysis in view of theory. JACS Au 2021, 1, 2130–2145.

26

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

27

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

28

Sharma, R. K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A.; Zbořil, R.; Varma, R. S.; Antonietti, M.; Gawande, M. B. Recent development of Covalent Organic Frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 2020, 7, 411–454.

29

Zhan, X. J.; Chen, Z.; Zhang, Q. C. Recent progress in two-dimensional COFs for energy-related applications. J. Mater. Chem. A 2017, 5, 14463–14479.

30

Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent Organic Frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

31

Yusran, Y.; Fang, Q. R.; Valtchev, V. Electroactive covalent organic frameworks: Design, synthesis, and applications. Adv. Mater. 2020, 32, 2002038.

32

Zang, Y.; Wang, R.; Shao, P. P.; Feng, X.; Wang, S.; Zang, S. Q.; Mak, T. C. W. Prefabricated covalent organic framework nanosheets with double vacancies: Anchoring Cu for highly efficient photocatalytic H2 evolution. J. Mater. Chem. A 2020, 8, 25094–25100.

33

Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.

34

Zhang, L. Z.; Fischer, J. M. T. A.; Jia, Y.; Yan, X. C.; Xu, W.; Wang, X. Y.; Chen, J.; Yang, D. J.; Liu, H. W.; Zhuang, L. Z. et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763.

35

Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

36

Zhou, Y. N.; Gao, G. P.; Chu, W.; Wang, L. W. Transition-metal single atoms embedded into defective BC3 as efficient electrocatalysts for oxygen evolution and reduction reactions. Nanoscale 2021, 13, 1331–1339.

37

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

38

Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

39

Kresse G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

40

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

41

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

42

Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985.

43

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

44

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

45

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

46

Tang, W.; Sanville, E.; Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter. 2009, 21, 084204.

47

Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé-hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643.

48

Zhou, Y. N.; Sheng, L.; Luo, Q. Q.; Zhang, W. H.; Yang, J. L. Improving the activity of electrocatalysts toward the hydrogen evolution reaction, the oxygen evolution reaction, and the oxygen reduction reaction via modification of metal and ligand of conductive two-dimensional metal-organic frameworks. J. Phys. Chem. Lett. 2021, 12, 11652–11658.

49

Greeley, J.; Nørskov, J. K. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochim. Acta 2007, 52, 5829–5836.

50

Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.

51

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

52

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

53

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

54

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

55

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

56

Ouyang, R. H.; Ahmetcik, E.; Carbogno, C.; Scheffler, M.; Ghiringhelli, L. M. Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO. J. Phys.: Mater. 2019, 2, 024002.

57

Ouyang, R. H.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L. M.s. SISSO:A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidate. Phys. Rev. Mater. 2018, 2, 083802.

58

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

File
12274_2022_4510_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 March 2022
Revised: 05 May 2022
Accepted: 08 May 2022
Published: 21 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22102167 and U21A20317), the China Postdoctoral Science Foundation (No. 2021M693060), and the National Synchrotron Radiation Laboratory (No. KY2340000135) from the University of Science and Technology of China. The calculations were performed on the Supercomputing Center of the University of Science and Technology of China.

Return