Journal Home > Volume 15 , Issue 9

In cutaneous cosmetology surgery, local injection or coated anesthetics are generally used to provide analgesia at the treatment site to achieve painless operation. Due to the barrier of corneum, topical cream may cause uncertain dosage and delayed analgesia. Local injection has problems such as pain, infection, and misoperation. Therefore, it is necessary to develop a painless and rapid administration method for local anesthesia. Here, a lidocaine/hyaluronic acid bubble microneedle patch (Lido/HA bMNP) was prepared for rapid drug delivery and efficient analgesia. The bubble structure between microneedles (MNs) and the backing layer allowed the MNs to efficiently penetrate into the skin and remove from the backing layer under shear force to rapidly complete the administration. Drugs were quickly released with the dissolution of HA within 15 s, which immediately played an analgesic effect and lasted for 1 h. Lido/HA bMNP could deliver precise doses to the skin in an extremely short time, which had the advantages of convenient operation, high biosafety, rapid onset of analgesia, and reasonable pain relief time. This patch provided an alternative way for local anesthesia and it was a promising transdermal drug delivery method for the realization of high quality and efficiency “painless medical beauty”.


menu
Abstract
Full text
Outline
About this article

Rapidly separable bubble microneedle patch for effective local anesthesia

Show Author's information Yuan Yang1,2,§Huaqing Chu3,§Yan Zhang4,§Lingling Xu5Ruizeng Luo1Hui Zheng3( )Tailang Yin6( )Zhou Li1,2,7,8( )
CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning 530004, China
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China

§ Yuan Yang, Huaqing Chu, and Yan Zhang contributed equally to this work.

Abstract

In cutaneous cosmetology surgery, local injection or coated anesthetics are generally used to provide analgesia at the treatment site to achieve painless operation. Due to the barrier of corneum, topical cream may cause uncertain dosage and delayed analgesia. Local injection has problems such as pain, infection, and misoperation. Therefore, it is necessary to develop a painless and rapid administration method for local anesthesia. Here, a lidocaine/hyaluronic acid bubble microneedle patch (Lido/HA bMNP) was prepared for rapid drug delivery and efficient analgesia. The bubble structure between microneedles (MNs) and the backing layer allowed the MNs to efficiently penetrate into the skin and remove from the backing layer under shear force to rapidly complete the administration. Drugs were quickly released with the dissolution of HA within 15 s, which immediately played an analgesic effect and lasted for 1 h. Lido/HA bMNP could deliver precise doses to the skin in an extremely short time, which had the advantages of convenient operation, high biosafety, rapid onset of analgesia, and reasonable pain relief time. This patch provided an alternative way for local anesthesia and it was a promising transdermal drug delivery method for the realization of high quality and efficiency “painless medical beauty”.

Keywords: hyaluronic acid, separable bubble microneedle patch, rapid drug delivery, local anesthesia, cutaneous cosmetology surgery

References(43)

1

Abdelmoniem, S. A.; Mahmoud, S. A. Comparative evaluation of passive, active, and passive-active distraction techniques on pain perception during local anesthesia administration in children. J. Adv. Res. 2016, 7, 551–556.

2

Templeton, T. W.; Sommerfield, D.; Hii, J.; Sommerfield, A.; Matava, C. T.; Von Ungern-Sternberg, B. S. Risk assessment and optimization strategies to reduce perioperative respiratory adverse events in Pediatric Anesthesia—Part 2: Anesthesia-related risk and treatment options. Paediatr. Anaesth. 2022, 32, 217–227.

3

Jayakumar, A.; Jose, V. K.; Lee, J. M. Hydrogels for medical and environmental applications. Small Methods 2020, 4, 1900735.

4

Weldon, C.; Ji, T. J.; Nguyen, M. T.; Rwei, A.; Wang, W. P.; Hao, Y.; Zhao, C.; Mehta, M.; Wang, B. Y.; Tsui, J. et al. Nanoscale bupivacaine formulations to enhance the duration and safety of intravenous regional anesthesia. ACS Nano 2019, 13, 18–25.

5

Rwei, A. Y.; Sherburne, R. T.; Zurakowski, D.; Wang, B. B. S.; Kohane, D. S. Prolonged duration local anesthesia using liposomal bupivacaine combined with liposomal dexamethasone and dexmedetomidine. Anesth. Analg. 2018, 126, 1170–1175.

6

Santamaria, C. M.; Woodruff, A.; Yang, R.; Kohane, D. S. Drug delivery systems for prolonged duration local anesthesia. Mater. Today 2017, 20, 22–31.

7

Albright, G. A. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology 1979, 51, 285–287.

8

Yamashita, A.; Matsumoto, M.; Matsumoto, S.; Itoh, M.; Kawai, K.; Sakabe, T. A comparison of the neurotoxic effects on the spinal cord of tetracaine, lidocaine, bupivacaine, and ropivacaine administered intrathecally in rabbits. Anesth. Analg. 2003, 97, 512–519.

9

Katz, N. P.; Shapiro, D. E.; Herrmann, T. E.; Kost, J.; Custer, L. M. Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound-emitting device. Anesth. Analg. 2004, 98, 371–376.

10

Lei, Q.; He, D. F.; Ding, L. P.; Kong, F. H.; He, P. Y.; Huang, J. D.; Guo, J. M.; Brinker, C. J.; Luo, G. X.; Zhu, W. et al. Microneedle patches integrated with biomineralized melanin nanoparticles for simultaneous skin tumor photothermal therapy and wound healing. Adv. Funct. Mater. 2022, 2113269.

11

Yang, Y.; Xu, L. L.; Jiang, D. J.; Chen, B. Z.; Luo, R. Z.; Liu, Z.; Qu, X. C.; Wang, C.; Shan, Y. Z.; Cui, Y. et al. Self-powered controllable transdermal drug delivery system. Adv. Funct. Mater. 2021, 31, 2104092.

12

Zhou, Z. Z.; Pang, J. H.; Wu, X. J.; Wu, W.; Chen, X. G.; Kong, M. Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle. Nano Res. 2020, 13, 1509–1518.

13

Wan, T.; Pan, Q.; Ping, Y. Microneedle-assisted genome editing: A transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci. Adv. 2021, 7, eabe2888.

14

Kim, Y. C.; Park, J. H.; Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568.

15

Sullivan, S. P.; Koutsonanos, D. G.; Del Pilar Martin, M.; Lee, J. W.; Zarnitsyn, V.; Choi, S. O.; Murthy, N.; Compans, R. W.; Skountzou, I.; Prausnitz, M. R. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 2010, 16, 915–920.

16

Xu, L. L.; Yang, Y.; Mao, Y. K.; Li, Z. Self-powerbility in electrical stimulation drug delivery system. Adv. Mater. Technol. 2022, 7, 2100055.

17

Luo, F. Q.; Chen, G. J.; Xu, W.; Zhou, D. J.; Li, J. X.; Huang, Y. C.; Lin, R.; Gu, Z.; Du, J. Z. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Res. 2021, 14, 2689–2696.

18

Jamaledin, R.; Yiu, C. K. Y.; Zare, E. N.; Niu, L. N.; Vecchione, R.; Chen, G. J.; Gu, Z.; Tay, F. R.; Makvandi, P. Advances in antimicrobial microneedle patches for combating infections. Adv. Mater. 2020, 32, 2002129.

19

Yu, J. C.; Wang, J. Q.; Zhang, Y. Q.; Chen, G. J.; Mao, W. W.; Ye, Y. Q.; Kahkoska, A. R.; Buse, J. B.; Langer, R.; Gu, Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 2020, 4, 499–506.

20

Li, X. L.; Huang, X. S.; Mo, J. S.; Wang, H.; Huang, Q. Q.; Yang, C.; Zhang, T.; Chen, H. J.; Hang, T.; Liu, F. M. et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv. Sci. 2021, 8, 2100827.

21

Donnelly, R. F.; Singh, T. R. R.; Garland, M. J.; Migalska, K.; Majithiya, R.; McCrudden, C. M.; Kole, P. L.; Mahmood, T. M. T.; McCarthy, H. O.; Woolfson, A. D. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct. Mater. 2012, 22, 4879–4890.

22

Jin, X.; Zhu, D. D.; Chen, B. Z.; Ashfaq, M.; Guo, X. D. Insulin delivery systems combined with microneedle technology. Adv. Drug Deliv. Rev. 2018, 127, 119–137.

23

Than, A.; Liang, K.; Xu, S. H.; Sun, L.; Duan, H. W.; Xi, F. N.; Xu, C. J.; Chen, P. Transdermal delivery of anti-obesity compounds to subcutaneous adipose tissue with polymeric microneedle patches. Small Methods 2017, 1, 1700269.

24

Xie, X.; Pascual, C.; Lieu, C.; Oh, S.; Wang, J.; Zou, B. D.; Xie, J. L.; Li, Z. H.; Xie, J.; Yeomans, D. C. et al. Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 2017, 11, 395–406.

25

Zhao, Z. Q.; Zhang, B. L.; Chu, H. Q.; Liang, L.; Chen, B. Z.; Zheng, H.; Guo, X. D. A high-dosage microneedle for programmable lidocaine delivery and enhanced local long-lasting analgesia. Mater. Sci. Eng. C 2021, 112620.

26

Yin, M. T.; Xiao, L.; Liu, Q. C.; Kwon, S. Y.; Zhang, Y.; Sharma, P. R.; Jin, L.; Li, X. D.; Xu, B. X. 3D printed microheater sensor-integrated, drug-encapsulated microneedle patch system for pain management. Adv. Healthc. Mater. 2019, 8, 1901170.

27

Li, Q. Y.; Zhang, J. N.; Chen, B. Z.; Wang, Q. L.; Guo, X. D. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017, 7, 15408–15415.

28

Waghule, T.; Singhvi, G.; Dubey, S. K.; Pandey, M. M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258.

29

Al Sulaiman, D.; Chang, J. Y. H.; Bennett, N. R.; Topouzi, H.; Higgins, C. A.; Irvine, D. J.; Ladame, S. Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano 2019, 13, 9620–9628.

30

Chang, H.; Zheng, M. J.; Chew, S. W. T.; Xu, C. J. Advances in the formulations of microneedles for manifold biomedical applications. Adv. Mater. Technol. 2020, 5, 1900552.

31

Yang, G.; Chen, Q.; Wen, D.; Chen, Z. W.; Wang, J. Q.; Chen, G. J.; Wang, Z. J.; Zhang, X. D.; Zhang, Y. Q.; Hu, Q. Y. et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 2019, 13, 4354–4360.

32

Sun, Y.; Chen, M. L.; Yang, D.; Qin, W. B.; Quan, G. L.; Wu, C. B.; Pan, X. Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Res. 2022, 15, 2335–2346.

33

Wang, C. Y.; Jiang, X.; Zeng, Y. N.; Terry, R. N.; Li, W. Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies. Med. Drug Discov. 2022, 13, 100118.

34

Zhan, H. H.; Ma, F. S.; Huang, Y. C.; Zhang. J.; Jiang, X. Y.; Qian, Y. C. Application of composite dissolving microneedles with high drug loading ratio for rapid local anesthesia. Eur. J. Pharm. Sci. 2018, 121, 330–337.

35

Wang, Q. L.; Zhu, D. D.; Liu, X. B.; Chen, B. Z.; Guo, X. D. Microneedles with controlled bubble sizes and drug distributions for efficient transdermal drug delivery. Sci. Rep. 2016, 6, 38755.

36

Suárez-Hernández, L. A.; Camacho-Ruíz, R. M.; Arriola-Guevara, E.; Padilla-Camberos, E.; Kirchmayr, M. R.; Corona-González, R. I.; Guatemala-Morales, G. M. Validation of an analytical method for the simultaneous determination of hyaluronic acid concentration and molecular weight by size-exclusion chromatography. Molecules 2021, 26, 5360.

37

Gotoh, S.; Onaya, J. I.; Abe, M.; Miyazaki, K.; Hamai, A.; Horie, K.; Tokuyasu, K. Effects of the molecular weight of hyaluronic acid and its action mechanisms on experimental joint pain in rats. Ann. Rheum. Dis. 1993, 52, 817–822.

38

Zhang, L. Q.; Zhang, X. P.; Hao, Y. Y.; Zhang, B. L.; Guo, X. D. Codelivery of hydrophilic and hydrophobic drugs in a microneedle patch for the treatment of skin pigmentation. J. Ind. Eng. Chem. 2020, 88, 241–250.

39

Pan, C. Y.; Li, X. C.; Sun, J.; Li, Z.; Zhang, L.; Qian, W. P.; Wang, P. M.; Dong, J. A multiplexed SERS-active microneedle for simultaneous redox potential and pH measurements in rat joints. ACS Appl. Bio Mater. 2019, 2, 2102–2108.

40

Chen, B. Z.; Zhang, L. Q.; Xia, Y. Y.; Zhang, X. P.; Guo, X. D. A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 2020, 6, eaba7260.

41

Liu, X. M.; Yan, J. Y.; Wu, X. P.; Wu, X.; Zhang, Y. J.; Li, B. Biosafety evaluation of Li2Si2O5 whisker-reinforced glass-ceramics. Biomed. Mater. 2022, 17, 025011.

42

Yu, X.; Ren, X. L.; Wang, M.; Wang, K.; Zhang, D. Q. Evaluation of biosafety/biocompatibility of calixpyridinium on different cell lines. J. Incl. Phenom. Macrocycl. Chem. 2021, 99, 109–115.

43

Brennan, T. J.; Vandermeulen, E. P.; Gebhart, G. F. Characterization of a rat model of incisional pain. Pain 1996, 64, 493–502.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 April 2022
Revised: 04 May 2022
Accepted: 06 May 2022
Published: 08 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61875015 and T2125003), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16021101), and Beijing Natural Science Foundation (Nos. JQ20038, L212010, and L212046).

Return