Journal Home > Volume 15 , Issue 9

H2O2 is an environmentally friendly chemical for a wide range of water treatments. The industrial production of H2O2 is an anthraquinone oxidation process, which, however, consumes extensive energy and produces pollution. Here we report a green and sustainable piezocatalytic intermediate water splitting process to simultaneously obtain H2O2 and H2 using single crystal vanadium (V)-doped NaNbO3 (V-NaNbO3) nanocubes as catalysts. The introduction of V improves the specific surface area and active sites of NaNbO3. Notably, V-NaNbO3 piezocatalysts of 10 mg exhibit 3.1-fold higher piezocatalytic efficiency than the same catalysts of 50 mg, as more piezocatalysts lead to higher probability of aggregation. The aggregation causes reducing active sites and decreased built-in electric field due to the neutralization between different nano-catalysts. Remarkably, piezocatalytic H2O2 and H2 production rates of V-NaNbO3 (10 mol%) nanocubes (102.6 and 346.2 μmol·g−1·h−1, respectively) are increased by 2.2 and 4.6 times compared to the as-prepared pristine NaNbO3 counterparts, respectively. This improved catalytic efficiency is attributed to the promoted piezo-response and more active sites of NaNbO3 catalysts after V doping, as uncovered by piezo-response force microscopy (PFM) and density functional theory (DFT) simulation. More importantly, our DFT results illustrate that inducing V could reduce the dynamic barrier of water dissociation over NaNbO3, thus enhancing the yield of H2O2 and H2. This facile yet robust piezocatalytic route using minimal amounts of catalysts to obtain H2O2 and H2 may stand out as a promising candidate for environmental applications and water splitting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Robust route to H2O2 and H2 via intermediate water splitting enabled by capitalizing on minimum vanadium-doped piezocatalysts

Show Author's information Yuekun Li1,§Li Li2,§Fangyan Liu1Biao Wang1Feng Gao1Chuan Liu5Jingyun Fang4Feng Huang1Zhang Lin2,3Mengye Wang1( )
School of Materials, Sun Yat-Sen University, Shenzhen 518107. State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
The Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China

§ Yuekun Li and Li Li contributed equally to this work.

Abstract

H2O2 is an environmentally friendly chemical for a wide range of water treatments. The industrial production of H2O2 is an anthraquinone oxidation process, which, however, consumes extensive energy and produces pollution. Here we report a green and sustainable piezocatalytic intermediate water splitting process to simultaneously obtain H2O2 and H2 using single crystal vanadium (V)-doped NaNbO3 (V-NaNbO3) nanocubes as catalysts. The introduction of V improves the specific surface area and active sites of NaNbO3. Notably, V-NaNbO3 piezocatalysts of 10 mg exhibit 3.1-fold higher piezocatalytic efficiency than the same catalysts of 50 mg, as more piezocatalysts lead to higher probability of aggregation. The aggregation causes reducing active sites and decreased built-in electric field due to the neutralization between different nano-catalysts. Remarkably, piezocatalytic H2O2 and H2 production rates of V-NaNbO3 (10 mol%) nanocubes (102.6 and 346.2 μmol·g−1·h−1, respectively) are increased by 2.2 and 4.6 times compared to the as-prepared pristine NaNbO3 counterparts, respectively. This improved catalytic efficiency is attributed to the promoted piezo-response and more active sites of NaNbO3 catalysts after V doping, as uncovered by piezo-response force microscopy (PFM) and density functional theory (DFT) simulation. More importantly, our DFT results illustrate that inducing V could reduce the dynamic barrier of water dissociation over NaNbO3, thus enhancing the yield of H2O2 and H2. This facile yet robust piezocatalytic route using minimal amounts of catalysts to obtain H2O2 and H2 may stand out as a promising candidate for environmental applications and water splitting.

Keywords: water splitting, H2O2 production , piezocatalysis, H2 evolution , vanadium-doped NaNbO3

References(46)

1

Lei, J. Y.; Chen, B.; Lv, W. J.; Zhou, L.; Wang, L. Z.; Liu, Y. D.; Zhang, J. L. Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustain. Chem. Eng. 2019, 7, 16467–16473.

2

Wang, Z. Z.; Zhao, Y. J.; Zhou, Y. J.; Wang, X.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. All-in-one photocatalysis device for one-step high concentration H2O2 photoproduction. Chem. Eng. J. 2022, 427, 131972.

3

Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.

4

Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvio, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

5

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

6

Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 2015, 137, 604–607.

7

Cui, X.; Zhao, Q.; Huang, Z. M.; Xiao, Y. F.; Wan, Y. P.; Li, S. L.; Lee, C. S. Water-splitting based and related therapeutic effects: Evolving concepts, progress, and perspectives. Small 2020, 16, 2004551.

8

Zhao, J.; He, X. Y. Preparation and electrocatalytic properties of oxygen precipitation of amorphous NiCo oxide. J. Synth. Cryst. 2020, 49, 896–897.

9

Huang, J.; Wang, Y.; Liu, X. Q.; Li, Y. C.; Hu, X. Q.; He, B.; Shu, Z.; Li, Z.; Zhao, Y. L. Synergistically enhanced charge separation in BiFeO3/Sn: TiO2 nanorod photoanode via bulk and surface dual modifications. Nano Energy, 2019, 59, 30–40.

10

He, B.; Jia, S. R.; Zhao, M. Y.; Wang, Y.; Chen, T.; Zhao, S. Q.; Li, Z.; Lin, Z. Q.; Zhao, Y. L.; Liu, X. Q. General and robust photothermal-heating-enabled high-efficiency photoelectrochemical water splitting. Adv. Mater. 2021, 33, 2004406.

11

Lin, Z. Q.; Zhi, C. Y.; Qu, L. T. Nano Research Energy: An interdisciplinary journal centered on nanomaterials and nanotechnology for energy. Nano Res. Energy 2022, 1, e9120005.

12

Wu, J.; Qin, N.; Bao, D. H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51.

13

Su, Y.; Zhang, L.; Wang, W. Z.; Li, X. M.; Zhang, Y. L.; Shao, D. K. Enhanced H2 evolution based on ultrasound-assisted piezo-catalysis of modified MoS2. J. Mater. Chem. A 2018, 6, 11909–11915.

14

Wu, J. M.; Chang, W. E.; Chang, Y. T.; Chang, C. K. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Adv. Mater. 2016, 28, 3718–3725.

15

Zhao, X. N.; Lei, Y. C.; Fang, P. F.; Li, H. J.; Han, Q.; Hu, W. G.; He, C. Q. Piezotronic effect of single/few-layers MoS2 nanosheets composite with TiO2 nanorod heterojunction. Nano Energy 2019, 66, 104168.

16

Kubota, K.; Pang, Y. D.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 2019, 366, 1500–1504.

17

Zhao, L. L.; Zhang, Y.; Wang, F. L.; Hu, S. C.; Wang, X. N.; Ma, B. J.; Liu, H.; Wang, Z. L.; Sang, Y. H. BaTiO3 nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization. Nano Energy 2017, 39, 461–469.

18

Payandeh, S.; Strauss, F.; Mazilkin, A.; Kondrakov, A.; Brezesinski, T. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Res. Energy 2022, 1: e9120016.

19

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1: e9120017.

20

Veldurthi, N. K.; Jitta, R. R.; Ravi, G.; Guje, R.; Velchuri, R.; Venkataswamy, P.; Vithal, M. Fabrication and visible-light induced photocatalytic activity of NaNbO3 oriented composite photocatalyst coupled with N-NaNbO3 and V-NaNbO3. ChemistrySelect 2016, 1, 2783–2791.

21

Wei, Y.; Zhang, J. Z.; Zheng, Q.; Miao, J.; Alvarez, P. J. J.; Long, M. C. Quantification of photocatalytically-generated hydrogen peroxide in the presence of organic electron donors: Interference and reliability considerations. Chemosphere 2021, 279, 130556.

22

Wang, B.; Zhang, Q.; He, J. Q.; Huang, F.; Li, C. F.; Wang, M. Y. Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. J. Energy Chem. 2022, 65, 304–311.

23

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

24

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

25

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

26

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

27

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

28

Li, F.; Zhai, J. W.; Shen, B.; Liu, X.; Yang, K.; Zhang, Y.; Li, P.; Liu, B. H.; Zeng, H. R. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J. Appl. Phys. 2017, 121, 054103.

29

Ye, J. M.; Wang, G. S.; Chen, X. F.; Cao, F.; Dong, X. L. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1−x)NaNbO3-xCaSnO3 ceramics. Appl. Phys. Lett. 2019, 114, 122901.

30

Li, W.; Xia, X.; Zeng, J. T.; Zheng, L. Y.; Man, Z. Y.; Li, G. R. 1/6 type diffraction patterns and double P–E hysteresis loops in Bi(Mg2/3Nb1/3)O3 modified NaNbO3 ceramics. J. Phys. D.: Appl. Phys. 2020, 53, 305302.

31

Zhu, H. Y.; Zheng, Z. F.; Gao, X. P.; Huang, Y. N.; Yan, Z. M.; Zou, J.; Yin, H. M.; Zou, Q. D.; Kable, S. H.; Zhao, J. C. et al. Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: From Nb2O5 grains to microporous Na2Nb2O6·2/3H2O fibers and NaNbO3 cubes. J. Am. Chem. Soc. 2006, 128, 2373–2384.

32

Wu, S. Y.; Zhang, W.; Chen, X. M. Formation mechanism of NaNbO3 powders during hydrothermal synthesis. J. Mater. Sci.:Mater. Electron. 2010, 21, 450–455.

33

Shi, H. F.; Chen, G. Q.; Zhang, C. L.; Zou, Z. G. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal. 2014, 4, 3637–3643.

34

Liu, J. W.; Han, R.; Zhao, Y.; Wang, H. T.; Lu, W. J.; Yu, T. F.; Zhang, Y. X. Enhanced photoactivity of V-N codoped TiO2 derived from a two-step hydrothermal procedure for the degradation of PCP-Na under visible light irradiation. J. Phys. Chem. C 2011, 115, 4507–4515.

35

Molak, A.; Pawelczyk, M.; Kubacki, J.; Szot, K. Nano-scale chemical and structural segregation induced in surface layer of NaNbO3 crystals with thermal treatment at oxidising conditions studied by XPS, AFM, XRD, and electric properties tests. Phase Transit. 2009, 82, 662–682.

36

Kubacki, J.; Molak, A.; Talik, E. Electronic structure of NaNbO3-Mn single crystals. J. Alloys Compd. 2001, 328, 156–161.

37

Kim, J. H.; Jang, Y. J.; Kim, J. H.; Jang, J. W.; Choi, S. H.; Lee, J. S. Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 2015, 7, 19144–19151.

38

Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo-and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 2017, 56, 11860–11864.

39

Baek, J. H.; Gill, T. M.; Abroshan, H.; Park, S.; Shi, X. J.; Nørskov, J.; Jung, H. S.; Siahrostami, S.; Zheng, X. L. Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Lett. 2019, 4, 720–728.

40

Li, L. J.; Hu, Z. F.; Yu, J. C. On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angew. Chem., Int. Ed. 2020, 59, 20538–20544.

41

You, H. L.; Wu, Z.; Zhang, L. H.; Ying, Y. R.; Liu, Y.; Fei, L. F.; Chen, X. X.; Jia, Y. M.; Wang, Y. J.; Wang, F. F. et al. Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem., Int. Ed. 2019, 58, 11779–11784.

42

Siahrostami, S.; Li, G. L.; Viswanathan, V.; Nørskov, J. K. One-or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 2017, 8, 1157–1160.

43

Liu, Y. P.; Li, Y. H.; Li, X. Y.; Zhang, Q.; Yu, H.; Peng, X. W.; Peng, F. Regulating electron−hole separation to promote photocatalytic H2 evolution activity of nanoconfined Ru/MXene/TiO2 catalysts. ACS Nano 2020, 14, 14181–14189.

44

Liao, Y. W.; Yang, J.; Wang, G. H.; Wang, J.; Wang, K.; Yan, S. D. Hierarchical porous NiO as a noble-metal-free cocatalyst for enhanced photocatalytic H2 production of nitrogen-deficient g-C3N4. Rare Metals 2022, 41, 396–405.

45

Wang, C. Y.; Yang, C. H.; Zhang, Z. C. Unraveling molecular-level mechanisms of reactive facet of carbon nitride single crystals photocatalyzing overall water splitting. Rare Metals 2020, 39, 1353–1355.

46

Yang, T. L.; Ni, S. F.; Qin, P.; Dang, L. A mechanism study on the hydrogen evolution reaction catalyzed by molybdenum disulfide complexes. Chem. Commun. 2018, 54, 1113–1116.

File
12274_2022_4506_MOESM1_ESM.pdf (557.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 April 2022
Revised: 04 May 2022
Accepted: 05 May 2022
Published: 12 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

M. Y. W. gratefully acknowledges the financial support from the National Natural Science Foundation of China (No. 21905317), the Young Elite Scientists Sponsorship Program by CAST (No. 2019QNRC001), and Open Fund of Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling (No. 2020B121201003).

Return