Journal Home > Volume 15 , Issue 9

In the tumor immunosuppressive microenvironment (TIME), antigen presenting cells (APCs) usually exhibit a tumor suppressor phenotype. Toll-like receptors (TLRs) agonists could reprogram M2-type macrophages to M1-type and stimulate dendritic cells (DCs) maturation. The combination of TLR7/8 and TLR9 agonists seems to have synergistic therapeutic efficacy. Here, we designed a lipid-coated mesoporous silica nanoparticle (MSNs@Lipo) for the co-delivery of TLR7/8 agonist resiquimod (R848) and TLR9 agonist CpG oligodeoxynucleotides (ODNs) (CpG@MSNs-R@L-M). R848 was firstly conjugated onto the nanoparticle via silane chemistry, which is acidic responsive drug release. Then, CpG was loaded onto the nanoparticle through the positive charge mainly from TLR7/8 agonist R848. Our in vitro experiments further indicated that both drugs have acid-responsive release properties and could be taken up by DCs and located on the endosomes of APCs. More importantly, CpG@MSNs-R@L-M could significantly improve the antitumor efficacy in B16F10 melanoma model. The mechanistic study demonstrated that CpG@MSNs-R@L-M could remarkably modulate the TIME by promoting the maturation of DCs and repolarizing macrophages from M2 to M1 phenotype and facilitating the infiltration of tumor cytotoxic T cells. It was concluded that in comparison to single agonist, the co-delivery of dual agonists, CpG and R848, can improve anti-tumor immune responses for cancer immunotherapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Systematic co-delivery of dual agonists to enhance cancer immunotherapy

Show Author's information Xiangxia Li1Guiyuan Chen1Yangyi Wang2Lanhong Su1Bo Chen1Kecheng Wu1Yun Xing1Zechenxi Song1Ruike Dai1Tianxin Liu1Jiaao Zhao1Zhe Xie1Peijie Zhou2Xiaoping Xia3,4,5( )Yuanzeng Min1,2( )
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
Anhui Provincial Children’s Hospital, Hefei 230051, China
Children’s Hospital of Fudan University Anhui Hospital, Hefei 230051, China
Children’s Hospital of Anhui Medical University, Hefei 230051, China

Abstract

In the tumor immunosuppressive microenvironment (TIME), antigen presenting cells (APCs) usually exhibit a tumor suppressor phenotype. Toll-like receptors (TLRs) agonists could reprogram M2-type macrophages to M1-type and stimulate dendritic cells (DCs) maturation. The combination of TLR7/8 and TLR9 agonists seems to have synergistic therapeutic efficacy. Here, we designed a lipid-coated mesoporous silica nanoparticle (MSNs@Lipo) for the co-delivery of TLR7/8 agonist resiquimod (R848) and TLR9 agonist CpG oligodeoxynucleotides (ODNs) (CpG@MSNs-R@L-M). R848 was firstly conjugated onto the nanoparticle via silane chemistry, which is acidic responsive drug release. Then, CpG was loaded onto the nanoparticle through the positive charge mainly from TLR7/8 agonist R848. Our in vitro experiments further indicated that both drugs have acid-responsive release properties and could be taken up by DCs and located on the endosomes of APCs. More importantly, CpG@MSNs-R@L-M could significantly improve the antitumor efficacy in B16F10 melanoma model. The mechanistic study demonstrated that CpG@MSNs-R@L-M could remarkably modulate the TIME by promoting the maturation of DCs and repolarizing macrophages from M2 to M1 phenotype and facilitating the infiltration of tumor cytotoxic T cells. It was concluded that in comparison to single agonist, the co-delivery of dual agonists, CpG and R848, can improve anti-tumor immune responses for cancer immunotherapy.

Keywords: drug delivery, cancer immunotherapy, toll-like receptors (TLRs) agonists, mesoporous silica nanoparticles (MSNs), tumor immunosuppressive microenvironment (TIME)

References(55)

1

Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.

2

Chen, D. S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10.

3

Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014, 6, 1670–1690.

4

Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (time) for effective therapy. Nat. Med. 2018, 24, 541–550.

5

Hinshaw, D. C.; Shevde, L. A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019, 79, 4557–4566.

6

Song, W. T.; Das, M.; Xu, Y. D.; Si, X. H.; Zhang, Y.; Tang, Z. H.; Chen, X. S. Leveraging biomaterials for cancer immunotherapy: Targeting pattern recognition receptors. Mater. Today Nano 2019, 5, 100029.

7

Gao, M.; Xie, Y. Q.; Lei, K. W.; Zhao, Y.; Kurum, A.; Van Herck, S.; Guo, Y. G.; Hu, X. M.; Tang, L. A manganese phosphate nanocluster activates the cGAS-STING pathway for enhanced cancer immunotherapy. Adv. Ther. 2021, 4, 2100065.

8

Maisonneuve, C.; Bertholet, S.; Philpott, D. J.; De Gregorio, E. Unleashing the potential of nod- and toll-like agonists as vaccine adjuvants. Proc. Nat. l Acad. Sci. USA 2014, 111, 12294–12299.

9

Kaczanowska, S.; Joseph, A. M.; Davila, E. TLR agonists: Our best frenemy in cancer immunotherapy. J. Leukoc. Biol. 2013, 93, 847–863.

10

O'Neill, L. A. J.; Golenbock, D.; Bowie, A. G. The history of toll-like receptors—Redefining innate immunity. Nat. Rev. Immunol. 2013, 13, 453–460.

11

Smits, E. L. J. M.; Ponsaerts, P.; Berneman, Z. N.; Van Tendeloo, V. F. I. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 2008, 13, 859–875.

12

Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.

13

Wan, D. D.; Que, H. Y.; Chen, L.; Lan, T. X.; Hong, W. Q.; He, C.; Yang, J. Y.; Wei, Y. Q.; Wei, X. W. Lymph-node-targeted cholesterolized TLR7 agonist liposomes provoke a safe and durable antitumor response. Nano Lett. 2021, 21, 7960–7969.

14

Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783–8789.

15

Wu, J. S.; Li, J. X.; Shu, N.; Duan, Q. J.; Tong, Q. S.; Zhang, J. Y.; Huang, Y. C.; Yang, S. Y.; Zhao, Z. B.; Du, J. Z. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Res. 2022, 15, 510–518.

16

Chen, H. C.; Zhan, X.; Tran, K. K.; Shen, H. Selectively targeting the toll-like receptor 9 (TLR9)-IRF 7 signaling pathway by polymer blend particles. Biomaterials 2013, 34, 6464–6472.

17

Wang, L.; He, Y.; He, T. T.; Liu, G.; Lin, C. H.; Li, K.; Lu, L.; Cai, K. Y. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 2020, 255, 120208.

18

Blasius, A. L.; Beutler, B. Intracellular toll-like receptors. Immunity 2010, 32, 305–315.

19

Ni, Q. Q.; Zhang, F. W.; Liu, Y. J.; Wang, Z. T.; Yu, G. C.; Liang, B.; Niu, G.; Su, T.; Zhu, G.; Lu, G. M. et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci. Adv. 2020, 6, eaaw6071.

20

Kawai, T.; Akira, S. TLR signaling. Cell Death Differentiat. 2006, 13, 816–825.

21

Engel, A. L.; Holt, G. E.; Lu, H. L. The pharmacokinetics of toll-like receptor agonists and the impact on the immune system. Exp. Rev. Clin. Pharmacol. 2011, 4, 275–289.

22

Atukorale, P. U.; Raghunathan, S. P.; Raguveer, V.; Moon, T. J.; Zheng, C.; Bielecki, P. A.; Wiese, M. L.; Goldberg, A. L.; Covarrubias, G.; Hoimes, C. J. et al. Nanoparticle encapsulation of synergistic immune agonists enables systemic codelivery to tumor sites and IFNβ-driven antitumor immunity. Cancer Res. 2019, 79, 5394–5406.

23

Xia, H. M.; Qin, M. M.; Wang, Z. H.; Wang, Y. Q.; Chen, B. L.; Wan, F. J.; Tang, M. M.; Pan, X. Q.; Yang, Y.; Liu, J. X. et al. A ph-/enzyme-responsive nanoparticle selectively targets endosomal toll-like receptors to potentiate robust cancer vaccination. Nano Lett. 2022, 22, 2978–2987.

24

Madan-Lala, R.; Pradhan, P.; Roy, K. Combinatorial delivery of dual and triple TLR agonists via polymeric pathogen-like particles synergistically enhances innate and adaptive immune responses. Sci. Rep. 2017, 7, 2530.

25

Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.

26

Shao, K.; Singha, S.; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015, 9, 16–30.

27

Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol 2019, 14, 279–286.

28

Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.

29

Zhu, D. W.; Hu, C. Y.; Fan, F.; Qin, Y.; Huang, C. L.; Zhang, Z. M.; Lu, L.; Wang, H.; Sun, H. F.; Leng, X. G. et al. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials 2019, 206, 25–40.

30

Shaikh, I. M.; Tan, K. B.; Chaudhury, A.; Liu, Y. J.; Tan, B. J.; Tan, B. M. J.; Chiu, G. N. C. Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft. J. Control. Release 2013, 172, 852–861.

31
Palei, N. N.; Mohanta, B. C.; Sabapathi, M. L.; Das, M. K. Chapter 10—Lipid-based nanoparticles for cancer diagnosis and therapy. In Organic Materials as Smart Nanocarriers for Drug Delivery; Grumezescu, A. M., Ed.; William Andrew Publishing: Norwich, 2018; pp 415–470.
32

Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. Y.; Sood, A. K.; Hua, S. S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015, 6, 286.

33

Bimbo, L. M.; Denisova, O. V.; Mäkilä, E.; Kaasalainen, M.; De Brabander, J. K.; Hirvonen, J.; Salonen, J.; Kakkola, L.; Kainov, D.; Santos, H. A. Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS Nano 2013, 7, 6884–6893.

34

Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46, 792–801.

35

Mukherjee, M. B.; Mullick, R.; Reddy, B. U.; Das, S.; Raichur, A. M. Galactose functionalized mesoporous silica nanoparticles as delivery vehicle in the treatment of hepatitis c infection. ACS Appl. Bio Mater. 2020, 3, 7598–7610.

36

Parrott, M. C.; Finniss, M.; Luft, J. C.; Pandya, A.; Gullapalli, A.; Napier, M. E.; DeSimone, J. M. Incorporation and controlled release of silyl ether prodrugs from print nanoparticles. J. Am. Chem. Soc. 2012, 134, 7978–7982.

37

Wagner, J.; Gößl, D.; Ustyanovska, N.; Xiong, M. Y.; Hauser, D.; Zhuzhgova, O.; Hočevar, S.; Taskoparan, B.; Poller, L.; Datz, S. et al. Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano 2021, 15, 4450–4466.

38

Butler, K. S.; Durfee, P. N.; Theron, C.; Ashley, C. E.; Carnes, E. C.; Brinker, C. J. Protocells: Modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small 2016, 12, 2173–2185.

39

Epler, K.; Padilla, D.; Phillips, G.; Crowder, P.; Castillo, R.; Wilkinson, D.; Wilkinson, B.; Burgard, C.; Kalinich, R.; Townson, J. et al. Delivery of ricin toxin A-chain by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. Adv. Healthc. Mater. 2012, 1, 348–353.

40

Vahed, S. Z.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C 2017, 71, 1327–1341.

41

Mornet, S.; Lambert, O.; Duguet, E.; Brisson, A. The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett. 2005, 5, 281–285.

42

LaBauve, A. E.; Rinker, T. E.; Noureddine, A.; Serda, R. E.; Howe, J. Y.; Sherman, M. B.; Rasley, A.; Brinker, C. J.; Sasaki, D. Y.; Negrete, O. A. Lipid-coated mesoporous silica nanoparticles for the delivery of the ML336 antiviral to inhibit encephalitic alphavirus infection. Sci. Rep. 2018, 8, 13990.

43

Van Schooneveld, M. M.; Vucic, E.; Koole, R.; Zhou, Y.; Stocks, J.; Cormode, D. P.; Tang, C. Y.; Gordon, R. E.; Nicolay, K.; Meijerink, A. et al. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: A multimodality investigation. Nano Lett. 2008, 8, 2517–2525.

44

Choi, E. S.; Song, J.; Kang, Y. Y.; Mok, H. Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol. Biosci. 2019, 19, 1900042.

45

Wang, D.; Huang, J. B.; Wang, X. X.; Yu, Y.; Zhang, H.; Chen, Y.; Liu, J. J.; Sun, Z. G.; Zou, H.; Sun, D. X. et al. The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline-loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials 2013, 34, 7662–7673.

46

Teng, I. T.; Chang, Y. J.; Wang, L. S.; Lu, H. Y.; Wu, L. C.; Yang, C. M.; Chiu, C. C.; Yang, C. H.; Hsu, S. L.; Ho, J. A. A. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 2013, 34, 7462–7470.

47

Roggers, R. A.; Lin, V. S. Y.; Trewyn, B. G. Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and hela and normal mouse liver cell biocompatibility and cellular internalization. Mol. Pharmaceutics 2012, 9, 2770–2777.

48

Wan, X. J.; Wang, D.; Liu, S. Y. Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. Langmuir 2010, 26, 15574–15579.

49

Ye, J.; Yang, Y. F.; Dong, W. J.; Gao, Y.; Meng, Y. Y.; Wang, H. L.; Li, L.; Jin, J.; Ji, M.; Xia, X. J. et al. Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages. Int J Nanomedicine 2019, 14, 3203–3220.

50

Yang, R.; Xu, J.; Xu, L. G.; Sun, X. Q.; Chen, Q.; Zhao, Y. H.; Peng, R.; Liu, Z. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 2018, 12, 5121–5129.

51

Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61.

52

Hu, Y. B.; Dammer, E. B.; Ren, R. J.; Wang, G. The endosomal-lysosomal system: From acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 2015, 4, 18.

53

Michaelis, K. A.; Norgard, M. A.; Zhu, X. X.; Levasseur, P. R.; Sivagnanam, S.; Liudahl, S. M.; Burfeind, K. G.; Olson, B.; Pelz, K. R.; Ramos, D. M. A. et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 2019, 10, 4682.

54

Tsai, S. J.; Andorko, J. I.; Zeng, X. B.; Gammon, J. M.; Jewell, C. M. Polyplex interaction strength as a driver of potency during cancer immunotherapy. Nano Res. 2018, 11, 5642–5656.

55

Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 2016, 37, 855–865.

File
12274_2022_4504_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 February 2022
Revised: 04 May 2022
Accepted: 04 May 2022
Published: 20 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by a Start-Up grant KY2060000124 and KJ2060190030 from University of Science and Technology of China and supported by National Natural Science Foundation of China (Nos. 31971299, GG2065010001, GG2060190386, and 82102953) and Fundamental Research Funds for the Central Universities (Nos. WK2060190101, WY2060190092, and WK9110000144).

Return