Journal Home > Volume 15 , Issue 9

The practical application of nanomedicines for cancer therapy is generally hampered by their compromised tumor accumulation and transmembrane potency. Cell penetrating peptides (CPPs) have been widely used to enhance the drug delivery efficiency in tumor cells. However, conventional CPPs are vulnerable towards proteases and are generally lack of therapeutic effects. To maximize the efficacy of nanomedicines, new classes of cell penetrating therapeutic modalities are highly desirable. Stapled peptides have drawn wide attention as one of the cell-permeable peptidomimetics for intracellular targets. Herein, we reported a novel approach for enhancing the therapeutic efficacy of chemo-photothermal therapy by taking advantage of the robust cell permeability and therapeutic effects of stapled peptides. The designed pH-activatable lactam-stapled peptide-polymer conjugate formed supramolecular nanoassemblies to encapsulate the chemodrug doxorubicin (DOX). Once reaching the tumor site, the lactam-stapled proapoptotic peptide could be efficiently activated under acidic tumor microenvironment, thereby promoting the drug delivery to the tumor cells and specific targeting mitochondria to interfere with the energy metabolism of tumor cells, which works in synergy with the DOX and local hyperthermia upon near infrared ray (NIR) light irradiation. This work may benefit future design of stapled peptides-based stimuli-responsive nanoplatforms for enhanced cancer therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

pH-activatable lactam-stapled peptide-based nanoassemblies for enhanced chemo-photothermal therapy

Show Author's information Yao Xiao1Ling Zhang1Mengzhen Shi2Rui Tang2Zherui Jiang2Yue Song2Yuan Tian2( )Shaobing Zhou1( )
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

The practical application of nanomedicines for cancer therapy is generally hampered by their compromised tumor accumulation and transmembrane potency. Cell penetrating peptides (CPPs) have been widely used to enhance the drug delivery efficiency in tumor cells. However, conventional CPPs are vulnerable towards proteases and are generally lack of therapeutic effects. To maximize the efficacy of nanomedicines, new classes of cell penetrating therapeutic modalities are highly desirable. Stapled peptides have drawn wide attention as one of the cell-permeable peptidomimetics for intracellular targets. Herein, we reported a novel approach for enhancing the therapeutic efficacy of chemo-photothermal therapy by taking advantage of the robust cell permeability and therapeutic effects of stapled peptides. The designed pH-activatable lactam-stapled peptide-polymer conjugate formed supramolecular nanoassemblies to encapsulate the chemodrug doxorubicin (DOX). Once reaching the tumor site, the lactam-stapled proapoptotic peptide could be efficiently activated under acidic tumor microenvironment, thereby promoting the drug delivery to the tumor cells and specific targeting mitochondria to interfere with the energy metabolism of tumor cells, which works in synergy with the DOX and local hyperthermia upon near infrared ray (NIR) light irradiation. This work may benefit future design of stapled peptides-based stimuli-responsive nanoplatforms for enhanced cancer therapy.

Keywords: pH-responsive, photothermal therapy, chemotherapy, nanoassemblies, lactam-stapled peptide

References(34)

1
Principles of nanoparticle design for overcoming biological barriers to drug delivery Nat. Biotechnol. 2015 33 941 951 10.1038/nbt.3330

Blanco. E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

2
Xu F. N. Huang X. H. Wang Y. Zhou S. B. A size-changeable collagenase-modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue Adv. Mater. 2020 32 1906745 10.1002/adma.201906745

Xu, F. N.; Huang, X. H.; Wang, Y.; Zhou, S. B. A size-changeable collagenase-modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv. Mater. 2020, 32, 1906745.

3

Cai, L. L.; Xu, J. L.; Yang, Z. L.; Tong, R. S.; Dong, Z. L.; Wang, C.; Leong, K. W. Engineered biomaterials for cancer immunotherapy. MedComm 2020, 1, 35–46.

4
de Lázaro I. Mooney D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine Nat. Mater. 2021 20 1469 1479 10.1038/s41563-021-01047-7

de Lázaro, I.; Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021, 20, 1469–1479.

5
Guo X. Wei X. Chen Z. Zhang X. B. Yang G. Zhou S. B. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy Prog. Mater. Sci. 2020 107 100599 10.1016/j.pmatsci.2019.100599

Guo, X.; Wei, X.; Chen, Z.; Zhang, X. B.; Yang, G.; Zhou, S. B. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog. Mater. Sci. 2020, 107, 100599.

6

Tian, Y.; Zhou, S. B. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1668.

7

Kardani, K.; Milani, A.; Shabani, S. H.; Bolhassani, A. Cell penetrating peptides: The potent multi-cargo intracellular carriers. Expert Opin. Drug Del. 2019, 16, 1227–1258.

8

Cong, Y.; Ji, L.; Gao, Y. J.; Liu, F. H.; Cheng, D. B.; Hu, Z. Y.; Qiao, Z. Y.; Wang, H. Microenvironment-induced in situ self-assembly of polymer-peptide conjugates that attack solid tumors deeply. Angew. Chem., Int. Ed. 2019, 58, 4632–4637.

9

Traboulsi, H.; Larkin, H.; Bonin, M. A.; Volkov, L.; Lavoie, C. L.; Marsault, É. Macrocyclic cell penetrating peptides: A study of structure-penetration properties. Bioconjug. Chem. 2015, 26, 405–411.

10

Guo, X.; Wang, L.; Duval, K.; Fan, J.; Zhou, S. B.; Chen, Z. Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release. Adv. Mater. 2018, 30, 1705436.

11
Boedtkjer E. Pedersen S. F. The acidic tumor microenvironment as a driver of cancer Annu. Rev. Physiol. 2020 82 103 126 10.1146/annurev-physiol-021119-034627

Boedtkjer, E.; Pedersen, S. F. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 2020, 82, 103–126.

12

Shi, R. C.; Tang, Y. Q.; Miao, H. M. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm 2020, 1, 47–68.

13

Yan, F.; Duan, W. L.; Li, Y. K.; Wu, H.; Zhou, Y. L.; Pan, M.; Liu, H. M.; Liu, X.; Zheng, H. R. NIR-laser-controlled drug release from DOX/IR-780-loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy. Theranostics 2016, 6, 2337–2351.

14

Li, X. S.; Park, E. Y.; Kang, Y.; Kwon, N.; Yang, M. Y.; Lee, S.; Kim, W. J.; Kim, C.; Yoon, J. Supramolecular phthalocyanine assemblies for improved photoacoustic imaging and photothermal therapy. Angew. Chem., Int. Ed. 2020, 59, 8630–8634.

15

Ren, C. H.; Wang, Z. Y.; Zhang, X. L.; Gao, J.; Gao, Y.; Zhang, Y. M.; Liu, J. J.; Yang, C. H.; Liu, J. F. Construction of all-in-one peptide nanomedicine with photoacoustic imaging guided mild hyperthermia for enhanced cancer chemotherapy. Chem. Eng. J. 2021, 405, 127008.

16

Fan, R. R.; Chen, C. L.; Hou, H.; Chuan, D.; Mu, M.; Liu, Z. Y.; Liang, R. C.; Guo, G.; Xu, J. G. Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy. Adv. Funct. Mater. 2021, 31, 2009733.

17

He, Y. M.; Lei, L.; Cao, J.; Yang, X. T.; Cai, S. S.; Tong, F.; Huang, D.; Mei, H.; Luo, K.; Gao, H. L. et al. A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascade targeting. Sci. Adv. 2021, 7, eaba0776.

18

Chou, T. C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681.

19

de Araujo, A. D.; Hoang, H. N.; Kok, W. M.; Diness, F.; Gupta, P.; Hill, T. A.; Driver, R. W.; Price, D. A.; Liras, S.; Fairlie, D. P. Comparative α-helicity of cyclic pentapeptides in water. Angew. Chem., Int. Ed. 2014, 53, 6965–6969.

20

Verdine, G. L.; Hilinski, G. J. All-hydrocarbon stapled peptides as synthetic cell-accessible mini-proteins. Drug Discov. Today Technol. 2012, 9, e41–e47.

21

Tian, Y.; Li, J. X.; Zhao, H.; Zeng, X. Z.; Wang, D. Y.; Liu, Q. S.; Niu, X. G.; Huang, X. H.; Xu, N. H.; Li, Z. G. Stapling of unprotected helical peptides via photo-induced intramolecular thiol-yne hydrothiolation. Chem. Sci. 2016, 7, 3325–3330.

22

Tian, Y.; Jiang, Y. H.; Li, J. X.; Wang, D. Y.; Zhao, H.; Li, Z. G. Effect of stapling architecture on physiochemical properties and cell permeability of stapled α-helical peptides: A comparative study. ChemBioChem 2017, 18, 2087–2093.

23

Shi, M. Z.; Jiang, Z. R.; Xiao, Y.; Song, Y.; Tang, R.; Zhang, L.; Huang, J. F.; Tian, Y.; Zhou, S. B. Stapling of short cell-penetrating peptides for enhanced tumor cell-and-tissue dual-penetration. Chem. Commun. 2022, 58, 2299–2302.

24
Lee, J.; Oh, E. T.; Lee, H.; Kim, J.; Kim, H. G.; Park, H. J.; Kim, C. Stimuli-responsive conformational transformation of peptides for tunable cytotoxicity. Bioconjug. Chem. 2020, 31, 43–50.https://doi.org/10.1021/acs.bioconjchem.9b00730
DOI
25
Tang R. Song Y. Shi M. Z. Jiang Z. R. Zhang L. Xiao Y. Tian Y. Zhou S. B. Rational design of a dual-targeting natural toxin-like bicyclic peptide for selective bioenergetic blockage in cancer cells Bioconjug. Chem. 2020 31 43 50 10.1021/acs.bioconjchem.1c00366

Tang, R.; Song, Y.; Shi, M. Z.; Jiang, Z. R.; Zhang, L.; Xiao, Y.; Tian, Y.; Zhou, S. B. Rational design of a dual-targeting natural toxin-like bicyclic peptide for selective bioenergetic blockage in cancer cells. Bioconjug. Chem. 2020, 31, 43–50.

26

Hyun, S.; Lee, S.; Kim, S.; Jang, S.; Yu, J.; Lee, Y. Apoptosis inducing, conformationally constrained, dimeric peptide analogs of KLA with submicromolar cell penetrating abilities. Biomacromolecules 2014, 15, 3746–3752.

27

Ellerby, H. M.; Arap, W.; Ellerby, L. M.; Kain, R.; Andrusiak, R.; Del Rio, G.; Krajewski, S.; Lombardo, C. R.; Rao, R.; Ruoslahti, E. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 1999, 5, 1032–1038.

28

Rong, G. Y.; Wang, C. P.; Chen, L. J.; Yan, Y.; Cheng, Y. Y. Fluoroalkylation promotes cytosolic peptide delivery. Sci. Adv. 2020, 6, eaaz1774.

29

Perry, S. R.; Hill, T. A.; de Araujo, A. D.; Hoang, H. N.; Fairlie, D. P. Contiguous hydrophobic and charged surface patches in short helix-constrained peptides drive cell permeability. Org. Biomol. Chem. 2018, 16, 367–371.

30

Wang, S.; Huang P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.

31

Tang, L.; Yang, X. J.; Yin, Q.; Cai, K. M.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J. A. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA 2014, 111, 15344–15349.

32

Tang, L. G.; Zhang, F. W.; Yu, F.; Sun, W. J.; Song, M. L.; Chen, X. Y.; Zhang, X. Z.; Sun, X. L. Croconaine nanoparticles with enhanced tumor accumulation for multimodality cancer theranostics. Biomaterials 2017, 129, 28–36.

33

Gao, X. T.; Jiang, S. S.; Li, C. Y.; Chen, Y. Z.; Zhang, Y. F.; Huang, P.; Lin, J. Highly photostable croconium dye-anchored cell membrane vesicle for tumor pH-responsive duplex imaging-guided photothermal therapy. Biomaterials 2021, 267, 120454.

34

Hu, X.; Li, F. Y.; Xia, F.; Guo, X.; Wang, N.; Liang, L. L.; Yang, B.; Fan, K. L.; Yan, X. Y.; Ling, D. S. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy. J. Am. Chem. Soc. 2020, 142, 1636–1644.

File
12274_2022_4503_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 February 2022
Revised: 01 May 2022
Accepted: 04 May 2022
Published: 29 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development (R&D) Program of China (No. 2021YFB3800900), the Natural Science Foundation of China (Nos. 51725303, 21708031, and 52033007), the National Postdoctoral Program for Innovative Talents (No. BX20180264), China Postdoctoral Science Foundation (No. 2018M643519), the Sichuan Science and Technology Program (No. 2020JDRC0051), and the Fundamental Research Funds for the Central Universities (No. 2682021ZTPY075). The authors thank the Analysis and Testing Center of Southwest Jiaotong University. All animal procedures were carried out according to the Institutional Animal Care and Use Committee of Southwest Jiaotong University.

Return