Journal Home > Volume 15 , Issue 12

Developing highly efficient oxygen evolution reaction (OER) catalysts for electrolytic water splitting is urgently desirable but remains a challenge due to sluggish kinetic process of water oxidation. Herein, we report a one-step electrodeposition strategy to prepare Ni(OH)2 modified with Ir single-atom catalysts (SACs) (Ir SACs/Ni(OH)2) on an electrically conductive substrate of three dimensional (3D) hierarchical porous nickel foam (HP-NF) as efficient OER electrocatalyst. The HP-NF with abundant open pores can not only enable the full exposure of catalytically active sites but also facilitate the diffusion of electrolyte and release of gaseous oxygen produced. The optimal Ir SACs/Ni(OH)2@HP-NF exhibits a remarkable catalytic performance and outstanding stability for the OER activity in 1.0 M KOH alkaline media, delivering a low overpotential of ~ 223 mV at a current density of 10 mA·cm−2 and a low Tafel plot of 58 mV·dec−1. Various characterizations together with control electrochemical experiments demonstrated that the superior activity and robust stability of Ir SACs/Ni(OH)2@HP-NF for OER are originated from the highly distributed and exposed Ir SACs and 3D interconnected pores of HP-NF with high electric conductivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution

Show Author's information Chunxu Jia1,2Hao Qin1,2Chao Zhen1( )Huaze Zhu1,2Yongqiang Yang1Ali Han1Lianzhou Wang3Gang Liu1,2( )Hui-Ming Cheng1,4
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Developing highly efficient oxygen evolution reaction (OER) catalysts for electrolytic water splitting is urgently desirable but remains a challenge due to sluggish kinetic process of water oxidation. Herein, we report a one-step electrodeposition strategy to prepare Ni(OH)2 modified with Ir single-atom catalysts (SACs) (Ir SACs/Ni(OH)2) on an electrically conductive substrate of three dimensional (3D) hierarchical porous nickel foam (HP-NF) as efficient OER electrocatalyst. The HP-NF with abundant open pores can not only enable the full exposure of catalytically active sites but also facilitate the diffusion of electrolyte and release of gaseous oxygen produced. The optimal Ir SACs/Ni(OH)2@HP-NF exhibits a remarkable catalytic performance and outstanding stability for the OER activity in 1.0 M KOH alkaline media, delivering a low overpotential of ~ 223 mV at a current density of 10 mA·cm−2 and a low Tafel plot of 58 mV·dec−1. Various characterizations together with control electrochemical experiments demonstrated that the superior activity and robust stability of Ir SACs/Ni(OH)2@HP-NF for OER are originated from the highly distributed and exposed Ir SACs and 3D interconnected pores of HP-NF with high electric conductivity.

Keywords: electrocatalysis, oxygen evolution reaction, single-atom catalysts, hierarchical porous nickel

References(50)

[1]

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

[2]

Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

[3]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[4]

Kang, Y. Y.; Chen, R. Z.; Zhen, C.; Wang, L. Z.; Liu, G.; Cheng, H. M. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 2020, 65, 1163–1169.

[5]

Meng, X. D.; Zhen, C.; Liu, G.; Cheng, H. M. Stabilizing CuO photocathode with a Cu3N protection shell. Chin. J. Catal. 2022, 43, 755–760.

[6]

Lei, Z. W.; Wang, T. Y.; Zhao, B. T.; Cai, W. B.; Liu, Y.; Jiao, S. H.; Li, Q.; Cao, R. G.; Liu, M. L. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478.

[7]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[8]

Zhang, L. L.; Yang, Y. Q.; Zhu, H. Z.; Cheng, H. M.; Liu, G. Iron-doped NiS2 microcrystals with exposed {001} facets for electrocatalytic water oxidation. J. Colloid Interface Sci. 2022, 608, 599–604.

[9]

Shi, Q. R.; Zhu, C. Z.; Du, D.; Lin, Y. H. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 3181–3192.

[10]

Li, J. J.; Lian, Z.; Li, Q.; Wang, Z. C.; Liu, L. F.; Deepak, F. L.; Liu, Y. P.; Li, B.; Xu, J. Y.; Chen, Z. X. Boosting acidic water oxidation performance by constructing arrays-like nanoporous IrxRu1−xO2 with abundant atomic steps. Nano Res. 2022, 15, 5933–5939.

[11]

Guerra, O. J.; Eichman, J.; Kurtz, J.; Hodge, B. M. Cost competitiveness of electrolytic hydrogen. Joule 2019, 3, 2425–2443.

[12]

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[13]

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

[14]

Srinivas, K.; Chen, X.; Liu, D. W.; Ma, F.; Zhang, X. J.; Zhang, W. L.; Lin, H.; Chen, Y. F. Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction. Nano Res. 2022, 15, 5884–5894.

[15]

Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[16]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[17]

Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 2019, 5, 693–705.

[18]

Sharma, P.; Kumar, S.; Tomanec, O.; Petr, M.; Chen, J. Z.; Miller, J. T.; Varma, R. S.; Gawande, M. B.; Zbořil, R. Carbon nitride-based ruthenium single atom photocatalyst for CO2 reduction to methanol. Small 2021, 17, 2006478.

[19]

Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C.; Li, Z.; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H. et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963.

[20]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[21]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[22]

Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

[23]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[24]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[25]

Gusmão, R.; Veselý, M.; Sofer, Z. Recent developments on the single atom supported at 2D materials beyond graphene as catalysts. ACS Catal. 2020, 10, 9634–9648.

[26]

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

[27]

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

[28]

Lai, W. H.; Zhang, L. F.; Hua, W. B.; Indris, S.; Yan, Z. C.; Hu, Z.; Zhang, B. W.; Liu, Y. N.; Wang, L.; Liu, M. et al. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873.

[29]

Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

[30]

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

[31]

Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

[32]

Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

[33]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[34]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[35]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[36]

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

[37]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[38]

Lei, Z. W.; Cai, W. B.; Rao, Y. F.; Wang, K.; Jiang, Y. Y.; Liu, Y.; Jin, X.; Li, J. M.; Lv, Z. X.; Jiao, S. H. et al. Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity. Nat. Commun. 2022, 13, 24.

[39]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[40]

Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 2015, 119, 7243–7254.

[41]

Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084.

[42]

Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.

[43]

Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(v), and beyond. Adv. Mater. 2020, 32, 2000872.

[44]

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

[45]

Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

[46]

Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.

[47]

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

[48]

Zhong, B.; Kuang, P. Y.; Wang, L. X.; Yu, J. G. Hierarchical porous nickel supported NiFeOxHy nanosheets for efficient and robust oxygen evolution electrocatalyst under industrial condition. Appl. Catal. B 2021, 299, 120668.

[49]

Qin, H.; Zhen, C.; Jia, C. X.; Yang, Z. Q.; Ye, H. Q.; Cheng, H. M.; Liu, G. An oxidation-nitridation-denitridation approach to transform metal solids into foams with adjustable pore sizes for energy applications. Sci. Bull. 2021, 66, 1525–1532.

[50]

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

File
12274_2022_4501_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 April 2022
Revised: 01 May 2022
Accepted: 03 May 2022
Published: 08 July 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the National Key Research and Development Program of China (No. 2021YFA1500800), the National Natural Science Foundation of China (Nos. 51825204, 52072377, and 521888101), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2020192), the International Partnership Program of Chinese Academy of Sciences (No. 174321KYSB20200005), and the Natural Science Foundation of Liaoning Province (No. 2021-MS-014) for the financial support.

Return