Journal Home > Volume 15 , Issue 9

Ag is a potential low-cost oxygen reduction reaction (ORR) catalyst in alkaline condition, which is important for the zinc-air batteries. Here, we report that an Ag based single atom catalyst with heteroatom coordination. Ag1-h-NPClSC, has been synthesized and shown much improved performance towards ORR by manipulating the coordination environment of the Ag center. It shows a high half wave potential (0.896 V) and a high turnover frequency (TOF) (5.9 s−1) at 0.85 V, which are higher than the previously reported Ag based catalysts and commercial Pt/C. A zinc-air battery with high peak power density of 270 mW·cm−2 is fabricated by using the Ag1-h-NPClSC as air electrode. The high performance is attributed to (1) the hollow structure providing good mass transfer; (2) the single atom metal center structure providing high utility of the Ag; (3) heteroatom coordination environment providing the adjusted binding to the ORR intermediates. Density functional theory (DFT) calculations show that the energy barrier for the formation of OOH*, which is considered as the rate determine step for ORR on Ag nanoparticles, is lowered on Ag1-h-NPClSC, thus improving the ORR activity. This work demonstrates that the well manipulated Ag based single atom catalysts are promising in electrocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Silver based single atom catalyst with heteroatom coordination environment as high performance oxygen reduction reaction catalyst

Show Author's information Rui Sui1Xuejiang Zhang1Xingdong Wang1Xinyu Wang2Jiajing Pei1Yufeng Zhang1Xuerui Liu1Wenxing Chen3Wei Zhu1( )Zhongbin Zhuang1,4( )
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
International Clean Energy Research Office, China Three Gorges Corporation, Beijing 100038, China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Ag is a potential low-cost oxygen reduction reaction (ORR) catalyst in alkaline condition, which is important for the zinc-air batteries. Here, we report that an Ag based single atom catalyst with heteroatom coordination. Ag1-h-NPClSC, has been synthesized and shown much improved performance towards ORR by manipulating the coordination environment of the Ag center. It shows a high half wave potential (0.896 V) and a high turnover frequency (TOF) (5.9 s−1) at 0.85 V, which are higher than the previously reported Ag based catalysts and commercial Pt/C. A zinc-air battery with high peak power density of 270 mW·cm−2 is fabricated by using the Ag1-h-NPClSC as air electrode. The high performance is attributed to (1) the hollow structure providing good mass transfer; (2) the single atom metal center structure providing high utility of the Ag; (3) heteroatom coordination environment providing the adjusted binding to the ORR intermediates. Density functional theory (DFT) calculations show that the energy barrier for the formation of OOH*, which is considered as the rate determine step for ORR on Ag nanoparticles, is lowered on Ag1-h-NPClSC, thus improving the ORR activity. This work demonstrates that the well manipulated Ag based single atom catalysts are promising in electrocatalysis.

Keywords: Ag, oxygen reduction, zinc-air battery, single-atom, heteroatom coordination

References(44)

1

Li, Y. G.; Lu, J. Metal-air batteries: Will they be the future electrochemical energy storage device of choice. ACS Energy Lett. 2017, 2, 1370–1377.

2

Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

3

Liu, D. X.; Wang, B.; Li, H. G.; Huang, S. F.; Liu, M. M.; Wang, J.; Wang, Q. J.; Zhang, J. J.; Zhao, Y. F. Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries. Nano Energy 2019, 58, 277–283.

4

Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. N.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 2018, 30, 1804504.

5

Holewinski, A.; Idrobo, J. C.; Linic, S. High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction. Nat. Chem. 2014, 6, 828–834.

6

Xue, Y. R.; Wang, X. D.; Zhang, X. Q.; Fang, J. J.; Xu, Z. Y.; Zhang, Y. F.; Liu, X. R.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Cost-effective hydrogen oxidation reaction catalysts for hydroxide exchange membrane fuel cells. Acta Phys. Chim. Sin. 2020, 37, 2009103.

7

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

8

Lu, S. F.; Pan, J.; Huang, A. B.; Zhuang, L.; Lu, J. T. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. USA 2008, 105, 20611–20614.

9

Wang, J. H.; Zhao, Y.; Setzler, B. P.; Rojas-Carbonell, S.; Ben Yehuda, C.; Amel, A.; Page, M.; Wang, L.; Hu, K. D.; Shi, L. et al. Poly(Aryl Piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 2019, 4, 392–398.

10

Thanh, T. D.; Chuong, N. D.; Hien, H. V.; Kim, N. H.; Lee, J. H. Cuag@Ag core–shell nanostructure encapsulated by N-doped graphene as a high-performance catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2018, 10, 4672–4681.

11

Wu, X. Q.; Chen, F. Y.; Zhang, N.; Qaseem, A.; Johnston, R. L. Engineering bimetallic Ag-Cu nanoalloys for highly efficient oxygen reduction catalysts: A guideline for designing Ag-based electrocatalysts with activity comparable to Pt/C-20%. Small 2017, 13, 1603876.

12

Zhou, Y.; Lu, Q.; Zhuang, Z. B.; Hutchings, G. S.; Kattel, S.; Yan, Y. S.; Chen, J. G.; Xiao, J. Q.; Jiao, F. Oxygen reduction at very low overpotential on nanoporous Ag catalysts. Adv. Energy Mater. 2015, 5, 1500149.

13

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

14

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

15

Jin, H. H.; Zhu, J. W.; Yu, R. H.; Li, W. Q.; Ji, P. X.; Liang, L. H.; Liu, B. S.; Hu, C. X.; He, D. P.; Mu, S. C. Tuning the Fe-N4 sites by introducing Bi–O bonds in a Fe-N-C system for promoting the oxygen reduction reaction. J. Mater. Chem. A 2022, 10, 664–671.

16

Zheng, X. J.; Wu, J.; Cao, X. C.; Abbott, J.; Jin, C.; Wang, H. B.; Strasser, P.; Yang, R. Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B Environ. 2019, 241, 442–451.

17

Li, F. Z.; Fu, L.; Li, J. S.; Yan, J.; Tang, Y. G.; Pan, Y. F.; Wang, H. Y. Ag/Fe3O4-N-doped ketjenblack carbon composite as highly efficient oxygen reduction catalyst in Al-air batteries. J. Electrochem. Soc. 2017, 164, A3595–A3601.

18

Hu, P. G.; Song, Y.; Chen, L. M.; Chen, S. W. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media. Nanoscale 2015, 7, 9627–9636.

19

Park, S. A.; Lim, H.; Kim, Y. T. Enhanced oxygen reduction reaction activity due to electronic effects between Ag and Mn3O4 in alkaline media. ACS Catal. 2015, 5, 3995–4002.

20

Xu, Z. Y.; Zhang, X. J.; Wang, X. D.; Fang, J. J.; Zhang, Y. F.; Liu, X. R.; Zhu, W.; Yan, Y. S.; Zhuang, Z. B. Synthesis of Ag-Ni-Fe-P multielemental nanoparticles as bifunctional oxygen reduction/evolution reaction electrocatalysts. ACS Nano 2021, 15, 7131–7138.

21

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

22

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

23

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

24

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

25

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

26

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

27

Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

28

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

29

Chen, F.; Li, T. B.; Pan, X. L.; Guo, Y. L.; Han, B.; Liu, F.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Pd1/CeO2 single-atom catalyst for alkoxycarbonylation of aryl iodides. Sci. China Mater. 2020, 63, 959–964.

30

Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

31

Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

32

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

33

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

34

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

35

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

36

Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B Environ. 2020, 268, 118747.

37

Sui, R.; Pei, J. J.; Fang, J. J.; Zhang, X. J.; Zhang, Y. F.; Wei, F. J.; Chen, W. X.; Hu, Z.; Hu, S.; Zhu, W. et al. Engineering Ag-Nx single-atom sites on porous concave N-doped carbon for boosting CO2 electroreduction. ACS Appl. Mater. Interfaces 2021, 13, 17736–17744.

38

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

39

Hu, H.; Wang, J. J.; Cui, B. F.; Zheng, X. R.; Lin, J. G.; Deng, Y. D.; Han, X. P. Atomically dispersed selenium sites on nitrogen-doped carbon for efficient electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202114441.

40

Han, G. K.; Zhang, X.; Liu, W.; Zhang, Q. H.; Wang, Z. Q.; Cheng, J.; Yao, T.; Gu, L.; Du, C. Y.; Gao, Y. Z. et al. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 2021, 12, 6335.

41

Guan, Z.; Zhang, X. J.; Chen, W. X.; Pei, J. J.; Liu, D.; Xue, Y. R.; Zhu, W.; Zhuang, Z. B. Mesoporous S doped Fe-N-C materials as highly active oxygen reduction reaction catalyst. Chem. Commun. (Camb. ) 2018, 54, 12073–12076.

42

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

43

Zhao, W.; Huang, K.; Zhang, Q. H.; Wu, H.; Gu, L.; Yao, K. F.; Shen, Y.; Shao, Y. In-situ synthesis, operation and regeneration of nanoporous silver with high performance toward oxygen reduction reaction. Nano Energy 2019, 58, 69–77.

44

Li, M. S.; Wang, C. L.; Yang, Y.; Jiang, P.; Lin, Z. Y.; Xia, G. L.; Yang, K.; Xu, P. P.; Chen, Q. W. Turning carbon atoms into highly active oxygen reduction reaction electrocatalytic sites in nitrogen-doped graphene-coated Co@Ag. ACS Sustainable Chem. Eng. 2018, 6, 14033–14041.

File
12274_2022_4499_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 April 2022
Revised: 30 April 2022
Accepted: 03 May 2022
Published: 02 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0210300), the National Natural Science Foundation of China (No. 21971008), and Fundamental Research Funds for the Central Universities (Nos. buctrc201916 and buctrc201823).

Return