Journal Home > Volume 15 , Issue 9

The development of a high specific capacity and stable manganese (Mn)-based cathode material is very attractive for aqueous zinc-ion (Zn2+) batteries (ZIBs). However, the inherent low electrical conductivity and volume expansion challenges limit its stability improvement. Here, a mesoporous ZnMn2O4 (ZMO) nanocage (N-ZMO) coupled with nitrogen doping and oxygen vacancies is prepared by defect engineering and rational structural design as a high-performance cathode material for rechargeable ZIBs. The oxygen vacancies enhance the electrical conductivity of the material and the nitrogen doping releases the strong electrostatic force of the material to maintain a higher structural stability. Interestingly, N-ZMO exhibits excellent ability of Zn2+ storage (225.4 mAh·g−1 at 0.3 A·g−1), good rate, and stable cycling performance (88.4 mAh·g−1 after 1,000 cycles at 3 A·g−1). Furthermore, a flexible quasi-solid-state device with high energy density (261.6 Wh·kg−1) is assembled, demonstrating long-lasting durability. We believe that the strategy in this study can provide a new approach for developing aqueous ZIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coupling N-doping and rich oxygen vacancies in mesoporous ZnMn2O4 nanocages toward advanced aqueous zinc ion batteries

Show Author's information Can Huang1Qiufan Wang1( )Daohong Zhang1( )Guozhen Shen2( )
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

The development of a high specific capacity and stable manganese (Mn)-based cathode material is very attractive for aqueous zinc-ion (Zn2+) batteries (ZIBs). However, the inherent low electrical conductivity and volume expansion challenges limit its stability improvement. Here, a mesoporous ZnMn2O4 (ZMO) nanocage (N-ZMO) coupled with nitrogen doping and oxygen vacancies is prepared by defect engineering and rational structural design as a high-performance cathode material for rechargeable ZIBs. The oxygen vacancies enhance the electrical conductivity of the material and the nitrogen doping releases the strong electrostatic force of the material to maintain a higher structural stability. Interestingly, N-ZMO exhibits excellent ability of Zn2+ storage (225.4 mAh·g−1 at 0.3 A·g−1), good rate, and stable cycling performance (88.4 mAh·g−1 after 1,000 cycles at 3 A·g−1). Furthermore, a flexible quasi-solid-state device with high energy density (261.6 Wh·kg−1) is assembled, demonstrating long-lasting durability. We believe that the strategy in this study can provide a new approach for developing aqueous ZIBs.

Keywords: defect, oxygen vacancies, nitrogen (N)-doping, zinc-ion (Zn2+) storage , flexible quasi-solid-state device

References(41)

1

Li, C. P.; Xie, X. S.; Liang, S. Q.; Zhou, J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 2020, 3, 146–159.

2

Cao, F. Q.; Wu, B. H.; Li, T. Y.; Sun, S. T.; Jiao, Y. C.; Wu, P. Y. Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Res. 2022, 15, 2030–2039.

3
Yang, X. Z.; Li, W. P.; Lv, J. Z.; Sun, G. J.; Shi, Z. X.; Su, Y. W.; Lian, X. Y.; Shao, Y. Y.; Zhi, A. M.; Tian, X. Z. et al. In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Res., in press, https://doi.org/10.1007/s12274-021-3957-z.
DOI
4

Li, W. J.; Gao, X.; Chen, Z. Y.; Guo, R. T.; Zou, G. Q.; Hou, H. S.; Deng, W. T.; Ji, X. B.; Zhao, J. Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. Chem. Eng. J. 2020, 402, 125509.

5

Fu, Y. Q.; Wei, Q. L.; Zhang, G. X.; Wang, X. M.; Zhang, J. H.; Hu, Y. F.; Wang, D. N.; Zuin, L.; Zhou, T.; Wu, Y. C. et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 2018, 8, 1801445.

6

Tan, Q. Y.; Li, X. T.; Zhang, B.; Chen, X.; Tian, Y. W.; Wan, H. Z.; Zhang, L. S.; Miao, L.; Wang, C.; Gan, Y. et al. Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 2020, 10, 2001050.

7

Zhu, H. W.; Ge, J.; Peng, Y. C.; Zhao, H. Y.; Shi, L. A.; Yu, S. H. Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries. Nano Res. 2018, 11, 1554–1562.

8

Sun, Q. H.; He, J. J.; Li, X. D.; Lu, T. T.; Si, W. Y.; Zhao, F. H.; Wang, K.; Huang, C. S. In-situ synthesis of graphdiyne on Mn3O4 nanoparticles for efficient Zn ions diffusion and storage. Chem. Eng. J. 2022, 432, 134402.

9

Lee, G. J.; Abbas, M. A.; Lee, M. D.; Lee, J.; Lee, J.; Bang, J. H. Lithiation mechanism change driven by thermally induced grain fining and its impact on the performance of LiMn2O4 in lithium-ion batteries. Small 2020, 16, 2002292.

10

Yu, H.; Fan, H. S.; Yadian, B.; Tan, H. T.; Liu, W. L.; Hng, H. H.; Huang, Y. Z.; Yan, Q. Y. General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties. ACS Appl. Mater. Interfaces 2015, 7, 26751–26757.

11

Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

12

Li, Q. L.; Zhang, Q. C.; Zhou, Z. Y.; Gong, W. B.; Liu, C. L.; Feng, Y. B.; Hong, G.; Yao, Y. G. Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries. Nano Res. 2021, 14, 91–99.

13

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

14

Zhang, H. Z.; Wang, J.; Liu, Q. Y.; He, W. Y.; Lai, Z. Z.; Zhang, X. Y.; Yu, M. H.; Tong, Y. X.; Lu, X. H. Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 2019, 21, 154–161.

15

Qiu, W. D.; Xiao, H. B.; Feng, H. J.; Lin, Z. C.; Gao, H.; He, W. T.; Lu, X. H. Defect modulation of ZnMn2O4 nanotube arrays as high-rate and durable cathode for flexible quasi-solid-state zinc ion battery. Chem. Eng. J. 2021, 422, 129890.

16

Zhang, J.; Luan, Y. P.; Lyu, Z. Y.; Wang, L. J.; Xu, L. L.; Yuan, K. D.; Pan, F.; Lai, M.; Liu, Z. L.; Chen, W. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 14881–14888.

17

Zeng, Y. X.; Wang, Y.; Jin, Q.; Pei, Z. H.; Luan, D. Y.; Zhang, X. T.; Lou, X. W. Rationally designed Mn2O3–ZnMn2O4 hollow heterostructures from metal-organic frameworks for stable Zn-ion storage. Angew. Chem., Int. Ed. 2021, 60, 25793–25798.

18

Zhao, J. Q.; Xu, Z. J.; Zhou, Z.; Xi, S. B.; Xia, Y. P.; Zhang, Q. Y.; Huang, L. Q.; Mei, L.; Jiang, Y.; Gao, J. W. et al. A safe flexible self-powered wristband system by integrating defective MnO2−x nanosheet-based zinc-ion batteries with perovskite solar cells. ACS Nano 2021, 15, 10597–10608.

19
. (a) Hao, Y.; Feng, D. D.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 2022, 9, e2104832; (b) Wu, F.; Chen, N.; Chen, R. J.; Zhu, Q. Z.; Qian, J.; Li, L. “Liquid-in-solid” and “solid-in-liquid” electrolytes with high rate capacity and long cycling life for lithium-ion batteries. Chem. Mater. 2016, 28, 848–856.https://doi.org/10.1021/acs.chemmater.5b04278
DOI
20

Guo, Z. Y.; Fu, X.; Zhang, Y. X.; Chen, K. Non-selective synthesis and controllable transformation of parallel MnO2 with hydrogen ions. CrystEngComm 2020, 22, 6101–6105.

21

Liu, Y.; Wang, J.; Zeng, Y. X.; Liu, J.; Liu, X. Q.; Lu, X. H. Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries. Small 2020, 16, e1907458.

22

Qiu, W. D.; Zhou, Q. H.; Xiao, H. B.; Zhou, C.; He, W. T.; Li, Y.; Lu, X. H. Phosphate ion and oxygen defect-modulated nickel cobaltite nanowires: A bifunctional cathode for flexible hybrid supercapacitors and microbial fuel cells. J. Mater. Chem. A 2020, 8, 8722–8730.

23

Nai, J. W.; Lou, X. W. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 2019, 31, e1706825.

24

Han, M. M.; Huang, J. W.; Liang, S. Q.; Shan, L. T.; Xie, X. S.; Yi, Z. Y.; Wang, Y. R.; Guo, S.; Zhou, J. Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. iScience 2020, 23, 100797.

25

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

26

Zhang, X. W.; Meng, F.; Mao, S.; Ding, Q.; Shearer, M. J.; Faber, M. S.; Chen, J. H.; Hamers, R. J.; Jin, S. Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci. 2015, 8, 862–868.

27

Zhang, Y.; Deng, S. J.; Luo, M.; Pan, G. X.; Zeng, Y. X.; Lu, X. H.; Ai, C. Z.; Liu, Q.; Xiong, Q. Q.; Wang, X. L. et al. Defect promoted capacity and durability of N-MnO2−x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 2019, 15, e1905452.

28

Fang, G. Z.; Zhu, C. Y.; Chen, M. H.; Zhou, J.; Tang, B. Y.; Cao, X. X.; Zheng, X. S.; Pan, A. Q.; Liang, S. Q. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 2019, 29, 1808375.

29

Chen, L. L.; Yang, Z. H.; Qin, H. G.; Zeng, X.; Meng, J. L.; Chen, H. Z. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries. Electrochim. Acta 2019, 317, 155–163.

30

Huang, C.; Wang, Q. F.; Tian, G. F.; Zhang, D. H. Oxygen vacancies-enriched Mn3O4 enabling high-performance rechargeable aqueous zinc-ion battery. Mater. Today Phys. 2021, 21, 100518.

31

Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Mater. 2020, 28, 407–417.

32

Wu, Y.; Fee, J.; Tobin, Z.; Shirazi-Amin, A.; Kerns, P.; Dissanayake, S.; Mirich, A.; Suib, S. L. Amorphous manganese oxides: An approach for reversible aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2020, 3, 1627–1633.

33

Shi, M. J.; Wang, B.; Shen, Y.; Jiang, J. T.; Zhu, W. H.; Su, Y. J.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J. 2020, 399, 125627.

34

Chen, L. L.; Yang, Z. H.; Qin, H. G.; Zeng, X.; Meng, J. L. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J. Power Sources 2019, 425, 162–169.

35

Li, X. J.; Tang, Y. C.; Zhu, J. X.; Lv, H. M.; Zhao, L. M.; Wang, W. L.; Zhi, C. Y.; Li, H. F. Boosting the cycling stability of aqueous flexible Zn batteries via F doping in nickel-cobalt carbonate hydroxide cathode. Small 2020, 16, e2001935.

36

Wang, S. Z.; Li, L. L.; He, W. D.; Shao, Y. L.; Li, Y. L.; Wu, Y. Z.; Hao, X. P. Oxygen vacancy modulation of bimetallic oxynitride anodes toward advanced Li-ion capacitors. Adv. Funct. Mater. 2020, 30, 2000350.

37

Wang, S. Z.; Zhao, H. P.; Lv, S. Y.; Jiang, H. H.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P.; Lei, Y. Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium-ion capacitors. Adv. Energy Mater. 2021, 11, 2100408.

38

Wang, J. J.; Wang, J. G.; Liu, H. Y.; Wei, C. G.; Kang, F. Y. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 2019, 7, 13727–13735.

39

Li, H. F.; Yang, Q.; Mo, F. N.; Liang, G. J.; Liu, Z. X.; Tang, Z. J.; Ma, L. T.; Liu, J.; Shi, Z. C.; Zhi, C. Y. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Mater. 2019, 19, 94–101.

40

Zhang, B. H.; Liu, Y.; Wu, X. W.; Yang, Y. Q.; Chang, Z.; Wen, Z. B.; Wu, Y. P. An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 2014, 50, 1209–1211.

41

Li, W.; Wang, K. L.; Cheng, S. J.; Jiang, K. A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 2018, 15, 14–21.

File
12274_2022_4498_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 March 2022
Revised: 21 April 2022
Accepted: 03 May 2022
Published: 17 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51702369 and 51873233), Innovation group of National Ethanic Affairs Commission of China (No. MZR20006), Key R&D Plan of Hubei Province (No. 2020BAB077), and the Fundamental Research Funds for the Central Universities (Nos. CZZ21009 and CZP20006).

Return