Journal Home > Volume 15 , Issue 12

Understanding and manipulating synthetic progress for precisely controlling the components and defects of nanomaterials is an important and challenging task in materials synthesis and nanocatalysis. Metal phosphides (MPs) have been explored as cheap advanced materials in various catalytic fields. MP materials are usually synthesized through gas-solid phosphorization reaction in a trial-to-error manner, but their formation mechanism and the origin of controlled synthesis remain unclear. Here, we combine in situ thermogravimetric analysis-mass spectrometry (TG-MS) and quasi-in situ X-ray powder diffraction (XRD) analysis to probe the transformation mechanism from metal oxides (MOs) to MPs during the phosphorization process mediated by hypophosphite. Temperature, time, and the amount of hypophosphite are revealed as the driven forces while oxophilicity and crystallinity as the impeded forces, simultaneously control the component and defect level of a series of MP (M = Ni, Co, W, Mo, and Nb). The as-obtained WO2.9/WP is proved to be an efficient Z-scheme photocatalyst for oxidative coupling of methane with the total C2+ production and C2H4 selectivity in C2+ products reaching 10.75 μmol·g−1 and 98.25%. Our work provides a fundamental understanding of the phosphorization treatment and thereby guides a viable synthetic route to the controlled synthesis of MOxδ, MP, MOxδ/MP, and MP/M heterostructured materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite

Show Author's information Fanpeng Chen1,§Bohang Zhao1,§Mengyao Sun1Cuibo Liu1Yanmei Shi1Yifu Yu1Bin Zhang1,2( )
Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China

§ Fanpeng Chen and Bohang Zhao contributed equally to this work.

Abstract

Understanding and manipulating synthetic progress for precisely controlling the components and defects of nanomaterials is an important and challenging task in materials synthesis and nanocatalysis. Metal phosphides (MPs) have been explored as cheap advanced materials in various catalytic fields. MP materials are usually synthesized through gas-solid phosphorization reaction in a trial-to-error manner, but their formation mechanism and the origin of controlled synthesis remain unclear. Here, we combine in situ thermogravimetric analysis-mass spectrometry (TG-MS) and quasi-in situ X-ray powder diffraction (XRD) analysis to probe the transformation mechanism from metal oxides (MOs) to MPs during the phosphorization process mediated by hypophosphite. Temperature, time, and the amount of hypophosphite are revealed as the driven forces while oxophilicity and crystallinity as the impeded forces, simultaneously control the component and defect level of a series of MP (M = Ni, Co, W, Mo, and Nb). The as-obtained WO2.9/WP is proved to be an efficient Z-scheme photocatalyst for oxidative coupling of methane with the total C2+ production and C2H4 selectivity in C2+ products reaching 10.75 μmol·g−1 and 98.25%. Our work provides a fundamental understanding of the phosphorization treatment and thereby guides a viable synthetic route to the controlled synthesis of MOxδ, MP, MOxδ/MP, and MP/M heterostructured materials.

Keywords: oxygen vacancy, heterostructure, photocatalysis, methodology, phosphorization treatment, metal phosphides

References(54)

[1]

Xu, Y. F.; Duchesne, P. N.; Wang, L.; Tavasoli, A.; Jelle, A. A.; Xia, M. K.; Liao, J. F.; Kuang, D. B.; Ozin, G. A. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 2020, 11, 5149.

[2]

Zhou, X. R.; Li, X.; Prins, R.; Lv, J. Y.; Wang, A. J.; Sheng, Q. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk CoP and Co2P catalysts with stoichiometric P/Co ratios. J. Catal. 2021, 394, 167–180.

[3]

King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

[4]

Ji, L.; Li, L.; Ji, X. Q.; Zhang, Y.; Mou, S. Y.; Wu, T. W.; Liu, Q.; Li, B. H.; Zhu, X. J.; Luo, Y. L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem., Int. Ed. 2020, 59, 758–762.

[5]

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

[6]

Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.

[7]

Callejas, J. F.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 2016, 28, 6017–6044.

[8]

Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.

[9]

Cao, X. J.; Wang, T. Z.; Jiao, L. F. Transition-metal (Fe, Co, and Ni)-based nanofiber electrocatalysts for water splitting. Adv. Fiber Mater. 2021, 3, 210–228.

[10]

Mou, T.; Liang, J.; Ma, Z. Y.; Zhang, L. C.; Lin, Y. T.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. J. Mater. Chem. A 2021, 9, 24268–24275.

[11]

Yu, J.; Zhong, Y. J.; Wu, X. H.; Sunarso, J.; Ni, M.; Zhou, W.; Shao, Z. P. Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis. Adv. Sci. 2018, 5, 1800514.

[12]

Wu, M. Y.; Da, P. F.; Zhang, T.; Mao, J.; Liu, H.; Ling, T. Designing hybrid NiP2/NiO nanorod arrays for efficient alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 17896–17902.

[13]

Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.

[14]

Li, Z. H.; Zhang, X.; Liu, J. J.; Shi, R.; Waterhouse, G. I. N.; Wen, X. D.; Zhang, T. R. Titania-supported Ni2P/Ni catalysts for selective solar-driven CO hydrogenation. Adv. Mater. 2021, 33, e2103248.

[15]

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

[16]

Zhao, B. H.; Huang, Y.; Liu, D. L.; Yu, Y. F.; Zhang, B. Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p–n junction. Sci. China Chem. 2020, 63, 28–34.

[17]

Yue, L. C.; Liang, J.; Wu, Z. G.; Zhong, B. H.; Luo, Y. L.; Liu, Q.; Li, T. S.; Kong, Q. Q.; Liu, Y.; Asiri, A. M. et al. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. J. Mater. Chem. A 2021, 9, 11879–11907.

[18]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[19]

Xiao, C. L.; Gaddam, R. R.; Wu, Y. L.; Sun, X. M.; Liang, Y.; Li, Y. B.; Zhao, X. S. Improvement of the electrocatalytic performance of FeP in neutral electrolytes with fe nanoparticles. Chem. Eng. J. 2021, 408, 127330.

[20]

Lee, S. M.; Kim, J.; Moon, J.; Jung, K. N.; Kim, J. H.; Park, G. J.; Choi, J. H.; Rhee, D. Y.; Kim, J. S.; Lee, J. W. et al. A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery. Nat. Commun. 2021, 12, 39.

[21]

Niu, Y.; Xiao, M. L.; Zhu, J. B.; Zeng, T. T.; Li, J. D.; Zhang, W. Y.; Su, D.; Yu, A. P.; Chen, Z. W. A “trimurti” heterostructured hybrid with an intimate CoO/CoxP interface as a robust bifunctional air electrode for rechargeable Zn-air batteries. J. Mater. Chem. A 2020, 8, 9177–9184.

[22]

Zhai, T.; Wan, L. M.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q. Y.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167.

[23]

Du, M.; Miao, Z. Y.; Li, H. Z.; Zhang, F.; Sang, Y. H.; Wei, L.; Liu, H.; Wang, S. H. Oxygen-vacancy and phosphate coordination triggered strain engineering of vanadium oxide for high-performance aqueous zinc ion storage. Nano Energy 2021, 89, 106477.

[24]

Zhou, D.; Wang, Z.; Long, X.; An, Y. M.; Lin, H.; Xing, Z.; Ma, M.; Yang, S. H. One-pot synthesis of manganese oxides and cobalt phosphides nanohybrids with abundant heterointerfaces in an amorphous matrix for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2019, 7, 22530–22538.

[25]

Kepp, K. P. A quantitative scale of oxophilicity and thiophilicity. Inorg. Chem. 2016, 55, 9461–9470.

[26]

Liu, D. L.; Wang, C. H.; Yu, Y. F.; Zhao, B. H.; Wang, W. C.; Du, Y. H.; Zhang, B. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem 2019, 5, 376–389.

[27]

Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

[28]

Wu, R.; Zhang, J. F.; Shi, Y. M.; Liu, D. L.; Zhang, B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 6983–6986.

[29]

Chang, S. M.; Hsu, Y. Y.; Chan, T. S. Chemical capture of phosphine by a sol–gel-derived Cu/TiO2 adsorbent—Interaction mechanisms. J. Phys. Chem. C 2011, 115, 2005–2013.

[30]

Sheng, Q.; Li, X.; Prins, R.; Liu, C. J.; Hao, Q. L.; Chen, S. Z. Understanding the reduction of transition-metal phosphates to transition-metal phosphides by combining temperature-programmed reduction and infrared spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 11180–11183.

[31]

Rao, L. F.; Yates, J. T. Jr. Effect of hydroxyl groups on phosphine decomposition on a molybdena/alumina catalyst. J. Phys. Chem. 1993, 97, 5341–5347.

[32]

Li, Z.; Niu, W. H.; Yang, Z. Z.; Kara, A.; Wang, Q.; Wang, M. Y.; Gu, M.; Feng, Z. X.; Du, Y. G.; Yang, Y. Boosting alkaline hydrogen evolution: The dominating role of interior modification in surface electrocatalysis. Energy Environ. Sci. 2020, 13, 3110–3118.

[33]

Quinn, R.; Dahl, T. A.; Diamond, B. W.; Toseland, B. A. Removal of arsine from synthesis gas using a copper on carbon adsorbent. Ind. Eng. Chem. Res. 2006, 45, 6272–6278.

[34]

Pramanik, M.; Tominaka, S.; Wang, Z. L.; Takei, T.; Yamauchi, Y. Mesoporous semimetallic conductors: Structural and electronic properties of cobalt phosphide systems. Angew. Chem., Int. Ed. 2017, 56, 13508–13512.

[35]

Shao, W. W.; Wang, S. M.; Zhu, J. C.; Li, X. D.; Jiao, X. C.; Pan, Y.; Sun, Y. F.; Xie, Y. In-plane heterostructured Ag2S–In2S3 atomic layers enabling boosted CO2 photoreduction into CH4. Nano Res. 2021, 14, 4520–4527.

[36]

Liu, D. P.; Li, X.; Wei, L.; Zhang, T. T.; Wang, A. J.; Liu, C. G.; Prins, R. Disproportionation of hypophosphite and phosphite. Dalton Trans. 2017, 46, 6366–6378.

[37]

Zhang, X. Q.; Ptasinska, S. Heterogeneous oxygen-containing species formed via oxygen or water dissociative adsorption onto a gallium phosphide surface. Top. Catal. 2016, 59, 564–573.

[38]

Guliants, V. V.; Holmes, S. A.; Benziger, J. B.; Heaney, P.; Yates, D.; Wachs, I. E. In situ studies of atomic, nano- and macroscale order during VOHPO4·0.5H2O transformation to (VO)2P2O7. J. Mol. Catal. A: Chem. 2001, 172, 265–276.

[39]

Stegmann, N.; Petersen, H.; Weidenthaler, C.; Schmidt, W. Facile synthesis of novel, known, and low-valent transition metal phosphates via reductive phosphatization. J. Mater. Chem. A 2021, 9, 18247–18250.

[40]
Wang, Q. T.; Fang, Z. X.; Zhang, W.; Zhang, D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv. Fiber Mater., in press, https://doi.org/10.1007/s42765-021-00122-7.
[41]

Yang, B.; Bi, W. T.; Wan, Y. Y.; Li, X. G.; Huang, M. C.; Yuan, R. L.; Ju, H. X.; Chu, W. S.; Wu, X. J.; He, L. H. et al. Surface etching induced ultrathin sandwich structure realizing enhanced photocatalytic activity. Sci. China Chem. 2018, 61, 1572–1580.

[42]

Zheng, J. Y.; Lyu, Y.; Xie, C.; Wang, R. L.; Tao, L.; Wu, H. B.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Defect-enhanced charge separation and transfer within protection layer/semiconductor structure of photoanodes. Adv. Mater. 2018, 30, 1801773.

[43]

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

[44]

Low, J.; Jiang, C. J.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080.

[45]

Qiu, B. C.; Zhu, Q. H.; Du, M. M.; Fan, L. G.; Xing, M. Y.; Zhang, J. L. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem., Int. Ed. 2017, 56, 2684–2688.

[46]

Kähler, K.; Holz, M. C.; Rohe, M.; Strunk, J.; Muhler, M. Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: A TPD and DRIFTS study. ChemPhysChem 2010, 11, 2521–2529.

[47]

Li, D. D.; Xu, F.; Tang, X.; Dai, S.; Pu, T. C.; Liu, X. L.; Tian, P. F.; Xuan, F. Z.; Xu, Z.; Wachs, I. E. et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 2022, 5, 99–108.

[48]

Qian, Q. Y.; Vogt, C.; Mokhtar, M.; Asiri, A. M.; Al-Thabaiti, S. A.; Basahel, S. N.; Ruiz-Martínez, J.; Weckhuysen, B. M. Combined operando UV/Vis/IR spectroscopy reveals the role of methoxy and aromatic species during the methanol-to-olefins reaction over H-SAPO-34. ChemCatChem 2014, 6, 3396–3408.

[49]

Tao, F. F.; Shan, J. J.; Nguyen, L.; Wang, Z. Y.; Zhang, S. R.; Zhang, L.; Wu, Z. L.; Huang, W. X.; Zeng, S. B.; Hu, P. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat. Commun. 2015, 6, 7798.

[50]

Jiang, W. B.; Low, J.; Mao, K. K.; Duan, D. L.; Chen, S. M.; Liu, W.; Pao, C. W.; Ma, J.; Sang, S. K.; Shu, C. et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J. Am. Chem. Soc. 2021, 143, 269–278.

[51]

Wu, W. C.; Chuang, C. C.; Lin, J. L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. J. Phys. Chem. B 2000, 104, 8719–8724.

[52]

Finnie, K. S.; Luca, V.; Moran, P. D.; Bartlett, J. R.; Woolfrey, J. L. Vibrational spectroscopy and EXAFS study of Ti(OC2H5)4 and alcohol exchange in Ti(iso-OC3H7)4. J. Mater. Chem. 2000, 10, 409–418.

[53]

Song, S.; Song, H.; Li, L. M.; Wang, S. Y.; Chu, W.; Peng, K.; Meng, X. G.; Wang, Q.; Deng, B. W.; Liu, Q. X. et al. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat. Catal. 2021, 4, 1032–1042.

[54]

Have, I. C. T.; Kromwijk, J. J. G.; Monai, M.; Ferri, D.; Sterk, E. B.; Meirer, F.; Weckhuysen, B. M. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 2022, 13, 324.

File
12274_2022_4489_MOESM1_ESM.pdf (7.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 March 2022
Revised: 24 April 2022
Accepted: 02 May 2022
Published: 04 June 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the National Natural Science Foundation of China (Nos. 21422104 and 21373149) for financial support.

Return