Journal Home > Volume 15 , Issue 9

Vertical van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials have recently attracted substantial interests due to their unique properties. However, the direct synthesis of moiré superlattice remains a great challenge due to the difficulties in heterogeneous nucleation on smooth vdW surfaces. Here, we report a controllable chemical vapor deposition growth of complete monolayer WS2 on highly ordered pyrolytic graphite (HOPG) substrates through the plasma pretreatment. The results show that the morphologies of the grown WS2 have a strong dependence on the plasma parameters, including gas composition, source power, and treatment time. It is found that the surface C–C bonds are broken in the plasma pretreated HOPG, and the formed small clusters can act as the nucleation sites for the subsequent growth of WS2. Moreover, the height of clusters dominates the growth mode of WS2 islands. A transition from a 2D mode to three-dimensional (3D) growth mode occurs when the height is higher than the interlayer spacing of the heterostructure. Besides, diverse moiré superlattices with different twist angles for WS2/HOPG heterostructures are observed, and the formation mechanism is further analyzed by first-principles calculations.


menu
Abstract
Full text
Outline
About this article

Direct synthesis of moiré superlattice through chemical vapor deposition growth of monolayer WS2 on plasma-treated HOPG

Show Author's information Xiaowen Zhou§Zongnan Zhang§Xinlong ZengYaping Wu( )Feiya XuChunmiao ZhangXu Li( )Zhiming Wu( )Junyong Kang
Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices at Education Ministry, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, China

§ Xiaowen Zhou and Zongnan Zhang contributed equally to this work.

Abstract

Vertical van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials have recently attracted substantial interests due to their unique properties. However, the direct synthesis of moiré superlattice remains a great challenge due to the difficulties in heterogeneous nucleation on smooth vdW surfaces. Here, we report a controllable chemical vapor deposition growth of complete monolayer WS2 on highly ordered pyrolytic graphite (HOPG) substrates through the plasma pretreatment. The results show that the morphologies of the grown WS2 have a strong dependence on the plasma parameters, including gas composition, source power, and treatment time. It is found that the surface C–C bonds are broken in the plasma pretreated HOPG, and the formed small clusters can act as the nucleation sites for the subsequent growth of WS2. Moreover, the height of clusters dominates the growth mode of WS2 islands. A transition from a 2D mode to three-dimensional (3D) growth mode occurs when the height is higher than the interlayer spacing of the heterostructure. Besides, diverse moiré superlattices with different twist angles for WS2/HOPG heterostructures are observed, and the formation mechanism is further analyzed by first-principles calculations.

Keywords: chemical vapor deposition, plasma pretreatment, van der Waals (vdW) heterostructures, moiré superlattice

References(47)

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

2

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

3

Ye, Z. L.; Cao, T.; O'Brien, K.; Zhu, H. Y.; Yin, X. B.; Wang, Y.; Louie, S. G.; Zhang, X. Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214–218.

4

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

5

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

6

Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

7

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

8

Chen, G. R.; Jiang, L. L.; Wu, S.; Lyu, B. S.; Li, H. Y.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Shi, Z. W.; Jung, J. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 2019, 15, 237–241.

9

Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

10

He, J. Q.; Kumar, N.; Bellus, M. Z.; Chiu, H. Y.; He, D. W.; Wang, Y. S.; Zhao, H. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures. Nat. Commun. 2014, 5, 5622.

11

Song, Z. P.; Zhu, H. O.; Shi, W. T.; Sun, D. L.; Ruan, S. C. Ultrafast charge transfer in graphene-WS2 van der Waals heterostructures. Optik 2018, 174, 62–67.

12

Ulstrup, S.; Koch, R. J.; Singh, S.; McCreary, K. M.; Jonker, B. T.; Robinson, J. T.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Katoch, J. et al. Direct observation of minibands in a twisted graphene/WS2 bilayer. Sci. Adv. 2020, 6, eaay6104.

13

Liao, M. Z.; Wu, Z. W.; Du, L. J.; Zhang, T. T.; Wei, Z.; Zhu, J. Q.; Yu, H.; Tang, J.; Gu, L.; Xing, Y. X. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 2018, 9, 4068.

14

Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273–8277.

15

Kobayashi, Y.; Sasaki, S.; Mori, S.; Hibino, H.; Liu, Z.; Watanabe, K.; Taniguchi, T.; Suenaga, K.; Maniwa, Y.; Miyata, Y. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 2015, 9, 4056–4063.

16

Chen, J. J.; Shao, K.; Yang, W. H.; Tang, W. Q.; Zhou, J. P.; He, Q. M.; Wu, Y. P.; Zhang, C. M.; Li, X.; Yang, X. et al. Synthesis of wafer-scale monolayer WS2 crystals toward the application in integrated electronic devices. ACS Appl. Mater. Interfaces 2019, 11, 19381–19387.

17

Yang, P.; Yang, A. G.; Chen, L. X.; Chen, J.; Zhang, Y. W.; Wang, H. M.; Hu, L. G.; Zhang, R. J.; Liu, R.; Qu, X. P. et al. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 2019, 12, 823–827.

18

Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

19

Aljarb, A.; Cao, Z.; Tang, H. L.; Huang, J. K.; Li, M. L.; Hu, W. J.; Cavallo, L.; Li, L. J. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 2017, 11, 9215–9222.

20

Zhang, X. T.; Choudhury, T. H.; Chubarov, M.; Xiang, Y.; Jariwala, B.; Zhang, F.; Alem, N.; Wang, G. C.; Robinson, J. A.; Redwing, J. M. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 2018, 18, 1049–1056.

21

Xu, Z. Q.; Zhang, Y. P.; Lin, S. H.; Zheng, C. X.; Zhong, Y. L.; Xia, X.; Li, Z. P.; Sophia, P. J.; Fuhrer, M. S.; Cheng, Y. B. et al. Synthesis and transfer of large-area monolayer WS2 Crystals: Moving toward the recyclable use of sapphire substrates. ACS Nano 2015, 9, 6178–6187.

22

Sun, B. F.; Chen, J. J.; Zhou, X. Y.; Liu, M.; Wu, Y. P.; Xia, Y. Z.; Li, X.; Wu, Z. M.; Kang, J. Y. Facile synthesis of two-dimensional MoS2/WS2 lateral heterostructures with controllable core/shell size ratio by a one-step chemical vapor deposition method. Sci. China Phys. Mech. Astron. 2021, 64, 107311.

23

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

24

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

25

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396.

26

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

27

Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

28

Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.

29

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

30

Li, T. B.; Liu, C. Y.; Zhang, Z.; Yu, B.; Dong, H. L.; Jia, W.; Jia, Z. G.; Yu, C. Y.; Gan, L.; Xu, B. S. et al. Understanding the growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite. Nanoscale Res. Lett. 2018, 13, 130.

31

Yang, X. C.; Tang, S. J.; Ding, G. Q.; Xie, X. M.; Jiang, M. H.; Huang, F. Q. Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology 2012, 23, 025704.

32

Hashimoto, Y.; Huang, H. H.; Yoshimura, M.; Hara, M.; Hara, T.; Hara, Y.; Hamagaki, M. Dependence on treatment ion energy of nitrogen plasma for oxygen reduction reaction of high ordered pyrolytic graphite. Jpn. J. Appl. Phys. 2018, 57, 125504.

33

Zhang, L. F.; Feng, S. P.; Xiao, S. Q.; Shen, G.; Zhang, X. M.; Nan, H. Y.; Gu, X. F.; Ostrikov, K. Layer-controllable graphene by plasma thinning and post-annealing. Appl. Surf. Sci. 2018, 441, 639–646.

34

Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

35

Raj, R.; Maroo, S. C.; Wang, E. N. Wettability of graphene. Nano Lett. 2013, 13, 1509–1515.

36

Shin, Y. J.; Wang, Y. Y.; Huang, H.; Kalon, G.; Wee, A. T. S.; Shen, Z. X.; Bhatia, C. S.; Yang, H. Surface-energy engineering of graphene. Langmuir 2010, 26, 3798–3802.

37

Jo, S.; Jung, J. W.; Baik, J.; Kang, J. W.; Park, I. K.; Bae, T. S.; Chung, H. S.; Cho, C. H. Surface-diffusion-limited growth of atomically thin WS2 crystals from core–shell nuclei. Nanoscale 2019, 11, 8706–8714.

38

Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6, 2667–2673.

39

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

40

Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

41

Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; De Heer, W. A.; Lee, D. H.; Guinea, F.; Castro Neto, A. H.; Lanzara, A. Erratum: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 916–916.

42

Kerelsky, A.; McGilly, L. J.; Kennes, D. M.; Xian, L. D.; Yankowitz, M.; Chen, S. W.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 2019, 572, 95–100.

43

Rosenberger, M. R.; Chuang, H. J.; Phillips, M.; Oleshko, V. P.; McCreary, K. M.; Sivaram, S. V.; Hellberg, C. S.; Jonker, B. T. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550–4558.

44

Zheng, Z. R.; Ma, Q.; Bi, Z.; de la Barrera, S.; Liu, M. H.; Mao, N. N.; Zhang, Y.; Kiper, N.; Watanabe, K.; Taniguchi, T. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 2020, 588, 71–76.

45

Büch, H.; Rossi, A.; Forti, S.; Convertino, D.; Tozzini, V.; Coletti, C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res. 2018, 11, 5946–5956.

46

Liu, X. L.; Balla, I.; Bergeron, H.; Hersam, M. C. Point defects and grain boundaries in rotationally commensurate MoS2 on epitaxial graphene. J. Phys. Chem. C 2016, 120, 20798–20805.

47

Chen, P. Y.; Zhang, X. Q.; Lai, Y. Y.; Lin, E. C.; Chen, C. A.; Guan, S. Y.; Chen, J. J.; Yang, Z. H.; Tseng, Y. W.; Gwo, S. et al. Tunable moiré superlattice of artificially twisted monolayers. Adv. Mater. 2019, 31, 1901077.

Publication history
Copyright
Acknowledgements

Publication history

Received: 24 February 2022
Revised: 28 April 2022
Accepted: 29 April 2022
Published: 08 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Nos. 61974123, 61874092, and 61804129), the National Science Fund for Excellent Young Scholars (No. 62022068), and the Fundamental Research Funds for the Central Universities (Nos. 20720190055 and 20720190058).

Return