Journal Home > Volume 16 , Issue 4

Domain boundaries are regarded as the effective active sites for electrochemical energy storage materials due to defects enrichment therein. However, layered double hydroxides (LDHs) tend to grow into single crystalline nano sheets due to their unique two-dimentional (2D) lattice structure. Previously, much efforts were made on the designing hierarchical structure to provide more exposed electroactive sites as well as accelerate the mass transfer. Herein, we demonstrate a strategy to introduce low angle grain boundary (LAGB) in the flakes of Ni/Co layered double hydroxides (NiCo-LDHs). These defect-rich nano flakes were self-assembled into hydrangea-like spheres that further constructed hollow cage structure. Both the formation of hierarchical structure and grain boundaries are interpreted with the synergistic effect of Ni2+/Co2+ ratio in an “etching-growth” process. The domain boundary defect also results in the preferential formation of oxygen vacancy (Vo). Additionally, density functional theory (DFT) calculation reveals that Co substitution is a critical factor for the formation of adjacent lattice defects, which contributes to the formation of domains boundary. The fabricated battery-type Faradaic NiCo-LDH-2 electrode material exhibits significantly enhanced specific capacitance of 899 C·g−1 at a current density of 1 A·g−1. NiCo-LDH-2//AC asymmetric capacitor shows a maximum energy density of 101.1 Wh·kg−1 at the power density of 1.5 kW·kg−1.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-plane grain boundary induced defect state in hierarchical NiCo-LDH and effect on battery-type charge storage

Show Author's information Jinjin Ban1,§Xiaohan Wen1,2,§Honghong Lei3Guoqin Cao1,2Xinhong Liu1Chunyao Niu4Guosheng Shao1,2( )Junhua Hu1,2( )
School of Materials Science and Engineering, Industrial Technology Research Institute of Resource and Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, China
State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
Henan Provincial Key Laboratory for Metal Fuel Battery, Foguang Power Generation Equipment Co. Ltd, 50 Holly Street, Zhengzhou 450000, China
International Laboratory for Quantum Functional Materials of Henan, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Jinjin Ban and Xiaohan Wen contributed equally to this work.

Abstract

Domain boundaries are regarded as the effective active sites for electrochemical energy storage materials due to defects enrichment therein. However, layered double hydroxides (LDHs) tend to grow into single crystalline nano sheets due to their unique two-dimentional (2D) lattice structure. Previously, much efforts were made on the designing hierarchical structure to provide more exposed electroactive sites as well as accelerate the mass transfer. Herein, we demonstrate a strategy to introduce low angle grain boundary (LAGB) in the flakes of Ni/Co layered double hydroxides (NiCo-LDHs). These defect-rich nano flakes were self-assembled into hydrangea-like spheres that further constructed hollow cage structure. Both the formation of hierarchical structure and grain boundaries are interpreted with the synergistic effect of Ni2+/Co2+ ratio in an “etching-growth” process. The domain boundary defect also results in the preferential formation of oxygen vacancy (Vo). Additionally, density functional theory (DFT) calculation reveals that Co substitution is a critical factor for the formation of adjacent lattice defects, which contributes to the formation of domains boundary. The fabricated battery-type Faradaic NiCo-LDH-2 electrode material exhibits significantly enhanced specific capacitance of 899 C·g−1 at a current density of 1 A·g−1. NiCo-LDH-2//AC asymmetric capacitor shows a maximum energy density of 101.1 Wh·kg−1 at the power density of 1.5 kW·kg−1.

Keywords: grain boundary, hierarchical structure, sacrificial template, oxygen vacancy (Vo)

References(51)

[1]

Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

[2]

Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

[3]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[4]

Chen, S. H.; Qiu, L.; Cheng, H. M. Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 2020, 120, 2811–2878.

[5]

Fleischmann, S.; Mitchell, J. B.; Wang, R. C.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782.

[6]

Poonam; Sharma, K.; Arora, A.; Tripathi, S. K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825.

[7]

Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

[8]

Kumar, S.; Saeed, G.; Zhu, L.; Hui, K. N.; Kim, N. H.; Lee, J. H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor:A review. Chem. Eng. J. 2021, 403, 126352.

[9]

Ye, S. H.; Wang, J. P.; Hu, J.; Chen, Z. D.; Zheng, L. R.; Fu, Y. H.; Lei, Y. Q.; Ren, X. Z.; He, C. X.; Zhang, Q. L. et al. Electrochemical construction of low-crystalline CoOOH nanosheets with short-range ordered grains to improve oxygen evolution activity. ACS Catal. 2021, 11, 6104–6112.

[10]

Zhao, M. M.; Zhao, Q. X.; Li, B.; Xue, H. G.; Pang, H.; Chen, C. Y. Recent progress in layered double hydroxide based materials for electrochemical capacitors: Design, synthesis and performance. Nanoscale 2017, 9, 15206–15225.

[11]

Chen, C.; Tao, L.; Du, S. Q.; Chen, W.; Wang, Y. Y.; Zou, Y. Q.; Wang, S. Y. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage. Adv. Funct. Mater. 2020, 30, 1909832.

[12]

Chen, H.; Hu, L. F.; Chen, M.; Yan, Y.; Wu, L. M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942.

[13]

Zhu, F. F.; Liu, W. J.; Liu, Y.; Shi, W. D. Construction of porous interface on CNTs@NiCo-LDH core–shell nanotube arrays for supercapacitor applications. Chem. Eng. J. 2020, 383, 123150.

[14]

Lv, Z. J.; Zhong, Q.; Bu, Y. F. Controllable synthesis of Ni-Co nanosheets covered hollow box via altering the concentration of nitrate for high performance supercapacitor. Electrochim. Acta 2016, 215, 500–505.

[15]

Zhang, X. Y.; Liu, X. Q.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 2020, 4, 1900823.

[16]

Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer nife-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

[17]

Feng, B.; Lugg, N. R.; Kumamoto, A.; Ikuhara, Y.; Shibata, N. Direct observation of oxygen vacancy distribution across yttria-stabilized zirconia grain boundaries. Acs Nano 2017, 11, 11376–11382.

[18]

Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

[19]

Lee, Y. R.; Kim, J.; Ahn, W. S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680.

[20]
Yilmaz, G. ; Yam, K. M. ; Zhang, C. ; Fan, H. J. ; Ho, G. W. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv. Mater. 2017, 29, 1606814.
[21]

Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 2013, 5, 11770–11775.

[22]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

[23]

Qu, C.; Zhao, B. T.; Jiao, Y.; Chen, D. C.; Dai, S. G.; Deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R. Q.; Liu, M. L. Functionalized bimetallic hydroxides derived from metal-organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability. ACS Energy Lett. 2017, 2, 1263–1269.

[24]

Ban, J. J.; Wen, X. H.; Xu, H. J.; Wang, Z.; Liu, X. H.; Cao, G. Q.; Shao, G. S.; Hu, J. H. Dual evolution in defect and morphology of single-atom dispersed carbon based oxygen electrocatalyst. Adv. Funct. Mater. 2021, 31, 2010472.

[25]

Liu, S. B.; Liu, K.; Chen, K. J.; Fu, J. W.; Li, H. J. W.; An, P. D.; Li, H. M.; Jia, C. K.; Xie, H. P.; Liu, H. et al. Tailoring the structure of supported δ-MnO2 nanosheets to raise pseudocapacitance by surface-modified carbon cloth. J. Power Sources 2020, 449, 227507.

[26]

Long, H. B.; Mao, S. C.; Liu, Y. N.; Zhang, Z.; Han, X. D. Microstructural and compositional design of Ni-based single crystalline superalloysd—A review. J. Alloys Compd. 2018, 743, 203–220.

[27]

Sutton, A. P.; Vitek, V. On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries. Philos. Trans. Royal Soc. A Math. Phys. Sci. 1983, 309, 37–54.

[28]

Najib, S.; Bakan, F.; Abdullayeva, N.; Bahariqushchi, R.; Kasap, S.; Franzò, G.; Sankir, M.; Sankir, N. D.; Mirabella, S.; Erdem, E. Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 2020, 12, 16162–16172.

[29]

Guan, X. H.; Huang, M. H.; Yang, L.; Wang, G. S.; Guan, X. Facial design and synthesis of CoSx/Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors. Chem. Eng. J. 2019, 372, 151–162.

[30]

Wang, W. H.; Yan, H. W.; Anand, U.; Mirsaidov, U. Visualizing the conversion of metal-organic framework nanoparticles into hollow layered double hydroxide nanocages. J. Am. Chem. Soc. 2021, 143, 1854–1862.

[31]

Xu, W. J.; Lyu, F.; Bai, Y. C.; Gao, A. Q.; Feng, J.; Cai, Z. X.; Yin, Y. D. Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction. Nano Energy 2018, 43, 110–116.

[32]

Liu, X.; Guo, R. T.; Ni, K.; Xia, F. J.; Niu, C. J.; Wen, B.; Meng, J. S.; Wu, P. J.; Wu, J. S.; Wu, X. J. et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 2020, 32, 2001136.

[33]

Zhang, G. X.; Xu, H. R.; Hu, J. M. Nanoarchitectonics on Bi2MoO6 by alkali etching for enhanced photocatalytic performance. Adv. Powder Technol. 2021, 32, 4384–4390.

[34]

Lee, W.; Jung, H. J.; Lee, M. H.; Kim, Y. B.; Park, J. S.; Sinclair, R.; Prinz, F. B. Oxygen surface exchange at grain boundaries of oxide ion conductors. Adv. Funct. Mater. 2012, 22, 965–971.

[35]

Kim, N.; Gu, T. H.; Shin, D.; Jin, X. Y.; Shin, H.; Kim, M. G.; Kim, H.; Hwang, S. J. Lattice engineering to simultaneously control the defect/stacking structures of layered double hydroxide nanosheets to optimize their energy functionalities. ACS Nano 2021, 15, 8306–8318.

[36]

Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 15, 310–316.

[37]

Hafizuddin, S.; Mohapatra, N. C. A first-principles theory of the strain-effect electric field gradient in cubic metals due to point defects. J. Phys. F:Metal Phys. 1986, 16, 217–232.

[38]

Gu, W.; Li, J. Y.; Wang, Y. D. Effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging. Int. J. Miner. Metall. Mater. 2015, 22, 721–728.

[39]

Cai, C. L.; Wang, T.; Qu, G. W.; Feng, Z. Q. High thermal conductivity of graphene and structure defects: Prospects for thermal applications in graphene sheets. Chin. Chem. Lett. 2021, 32, 1293–1298.

[40]

Zanca, F.; Glasby, L. T.; Chong, S.; Chen, S. Y.; Kim, J.; Fairen-Jimenez, D.; Monserrat, B.; Moghadam, P. Z. Computational techniques for characterisation of electrically conductive MOFs: Quantum calculations and machine learning approaches. J. Mater. Chem. C 2021, 9, 13584–13599.

[41]

Xu, Q.; Li, X. F.; Sari, H. M. K.; Li, W. B.; Liu, W.; Hao, Y. C.; Qin, J.; Cao, B.; Xiao, W.; Xu, Y. et al. Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: Bimetallic oxides versus monometallic oxides. Nano Energy 2020, 77, 105034.

[42]

Wang, X. H.; Fang, Y.; Shi, B.; Huang, F. F.; Rong, F.; Que, R. H. Three-dimensional NiCo2O4@NiCo2O4 core-shell nanocones arrays for high-performance supercapacitors. Chem. Eng. J. 2018, 344, 311–319.

[43]

Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive. J. Electrochem. Soc. 2015, 162, A5185–A5189.

[44]

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin. Science 2014, 343, 1210–1211.

[45]

Mathis, T. S.; Kurra, N.; Wang, X. H.; Pinto, D.;Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007.

[46]

Li, M.; Ma, K. Y.; Cheng, J. P.; Lv, D. H.; Zhang, X. B. Nickel-cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J. Power Sources 2015, 286, 438–444.

[47]

Chodankar, N. R.; Pham, H. D.; Nanjundan, A. K.; Fernando, J. F. S.; Jayaramulu, K.; Golberg, D.; Han, Y. K.; Dubal, D. P. True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors. Small 2020, 16, 2002806.

[48]

Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048–3058.

[49]

Xu, B.; Zhang, H. B.; Mei, H.; Sun, D. F. Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord. Chem. Rev. 2020, 420, 213438.

[50]

Yu, G. H.; Xie, X.; Pan, L. J.; Bao, Z. N.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234.

[51]

Wang, C.; Sui, G.; Guo, D. X.; Li, J. L.; Zhang, L.; Li, S. B.; Xin, J. J.; Chai, D. F.; Guo, W. X. Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 599, 577–585.

File
12274_2022_4485_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2022
Revised: 20 March 2022
Accepted: 01 May 2022
Published: 27 June 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 52171082 and 51001091) and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 21IRTSTHN003). This work was also partially supported by the provincial scientific research program of Henan (No. 182102310815) and Nuclear Material Technology Innovation Fund for National Defense Technology Industry (No. ICNM-2021-YZ-02).

Return