Journal Home > Volume 15 , Issue 9

Currently, the incorporation of multiple epitopes into vaccines is more desirable than the incorporation of a single antigen for universal influenza vaccine development. However, epitopes induce poor immune responses. Although the use of adjuvants can overcome this obstacle, it may raise new problems. Effective antigen delivery vehicles that can function as both antigen carriers and intrinsic adjuvants are highly desired for vaccine development. Here, we report a biepitope nanovaccine that provides complete protection in mice against H3N2 virus as well as partial protection against H1N1 virus. This vaccine (3MCD-f) consists of two conserved epitopes (matrix protein 2 ectodomain (M2e) and CDhelix), and these epitopes were presented on the surface of ferritin in a sequential tandem format. Subcutaneous immunization with 3MCD-f in the absence of adjuvant induces robust humoral and cellular immune responses. These results provide a proof of concept for the 3MCD-f nanovaccine that might be an ideal candidate for future influenza pandemics.


menu
Abstract
Full text
Outline
About this article

A biepitope, adjuvant-free, self-assembled influenza nanovaccine provides cross-protection against H3N2 and H1N1 viruses in mice

Show Author's information Yongbo QiaoYaXin ZhangJie ChenShenghui JinYaming Shan( )
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China

Abstract

Currently, the incorporation of multiple epitopes into vaccines is more desirable than the incorporation of a single antigen for universal influenza vaccine development. However, epitopes induce poor immune responses. Although the use of adjuvants can overcome this obstacle, it may raise new problems. Effective antigen delivery vehicles that can function as both antigen carriers and intrinsic adjuvants are highly desired for vaccine development. Here, we report a biepitope nanovaccine that provides complete protection in mice against H3N2 virus as well as partial protection against H1N1 virus. This vaccine (3MCD-f) consists of two conserved epitopes (matrix protein 2 ectodomain (M2e) and CDhelix), and these epitopes were presented on the surface of ferritin in a sequential tandem format. Subcutaneous immunization with 3MCD-f in the absence of adjuvant induces robust humoral and cellular immune responses. These results provide a proof of concept for the 3MCD-f nanovaccine that might be an ideal candidate for future influenza pandemics.

Keywords: influenza, nanovaccine, universal vaccine, multi-epitope

References(47)

1

Eisenstein, M. Towards a universal flu vaccine. Nature 2019, 573, S50–S52.

2
Bioengineered  pseudovirus  nanoparticles  displaying  the  HA1 antigens of influenza viruses for enhanced immunogenicity Nano Res. 2022 15 4181 4190 10.1007/s12274-021-4011-x

Xia, M.; Hoq, M. R.; Huang, P. W.; Jiang, W.; Jiang, X.; Tan, M. Bioengineered pseudovirus nanoparticles displaying the HA1 antigens of influenza viruses for enhanced immunogenicity. Nano Res. 2022, 15, 4181–4190.

3

Krammer, F.; Palese, P. Universal influenza virus vaccines that target the conserved hemagglutinin stalk and conserved sites in the head domain. J. Infect. Dis. 2019, 219, S62–S67.

4

Nguyen, Q. T.; Choi, Y. K. Targeting antigens for universal influenza vaccine development. Viruses 2021, 13, 973.

5

Nachbagauer, R.; Palese, P. Is a universal influenza virus vaccine possible. Annu. Rev. Med. 2020, 71, 315–327.

6

Heaton, N. S.; Sachs, D.; Chen, C. J.; Hai, R.; Palese, P. Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proc. Natl. Acad. Sci. USA 2013, 110, 20248–20253.

7

Tan, H. X.; Jegaskanda, S.; Juno, J. A.; Esterbauer, R.; Wong, J.; Kelly, H. G.; Liu, Y.; Tilmanis, D.; Hurt, A. C.; Yewdell, J. W. et al. Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. J. Clin. Invest. 2019, 129, 850–862.

8

Vogel, O. A.; Manicassamy, B. Broadly protective strategies against influenza viruses: Universal vaccines and therapeutics. Front. Microbiol. 2020, 11, 135.

9

Krammer, F.; Palese, P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr. Opin. Virol. 2013, 3, 521–530.

10

Jang, Y. H.; Seong, B. L. The quest for a truly universal influenza vaccine. Front. Cell. Infect. Microbiol. 2019, 9, 344.

11

Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 7, 842–854.

12

Epstein, S. L.; Price, G. E. Cross-protective immunity to influenza a viruses. Expert Rev. Vaccines 2010, 9, 1325–1341.

13

Epstein, S. L. Universal influenza vaccines: Progress in achieving broad cross-protection in vivo. Am. J. Epidemiol. 2018, 187, 2603–2614.

14

Atsmon, J.; Kate-Ilovitz, E.; Shaikevich, D.; Singer, Y.; Volokhov, I.; Haim, K. Y.; Ben-Yedidia, T. Safety and immunogenicity of multimeric-001—A novel universal influenza vaccine. J. Clin. Immunol. 2012, 32, 595–603.

15

Stoloff, G. A.; Caparros-Wanderley, W. Synthetic multi-epitope peptides identified in silico induce protective immunity against multiple influenza serotypes. Eur. J. Immunol. 2007, 37, 2441–2449.

16

Francis, J. N.; Bunce, C. J.; Horlock, C.; Watson, J. M.; Warrington, S. J.; Georges, B.; Brown, C. B. A novel peptide-based pan-influenza a vaccine: A double blind, randomised clinical trial of immunogenicity and safety. Vaccine 2015, 33, 396–402.

17

Negahdaripour, M.; Golkar, N.; Hajighahramani, N.; Kianpour, S.; Nezafat, N.; Ghasemi, Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol. Adv. 2017, 35, 575–596.

18

Sun, W. Q.; He, L. H.; Zhang, H.; Tian, X. D.; Bai, Z. H.; Sun, L.; Yang, L. M.; Jia, X. J.; Bi, Y. H.; Luo, T. R. et al. The self-assembled nanoparticle-based trimeric RBD mRNA vaccine elicits robust and durable protective immunity against SARS-CoV-2 in mice. Signal Transduct Targeted Ther. 2021, 6, 340.

19

Pan, J. D.; Cui, Z. Q. Self-assembled nanoparticles: Exciting platforms for vaccination. Biotechnol. J. 2020, 15, 2000087.

20

López-Sagaseta, J.; Malito, E.; Rappuoli, R.; Bottomley, M. J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J. 2016, 14, 58–68.

21

Li, S.; Wang, B.; Jiang, S.; Pan, Y.; Shi, Y. H.; Kong, W.; Shan, Y. M. Surface-functionalized silica-coated calcium phosphate nanoparticles efficiently deliver DNA-based HIV-1 trimeric envelope vaccines against HIV-1. ACS Appl. Mater. Interfaces 2021, 13, 53630–53645.

22

Wang, B.; Li, S.; Qiao, Y. B.; Fu, Y.; Nie, J. J.; Jiang, S.; Yao, X.; Pan, Y.; Zhao, L. Y.; Wu, C. M. et al. Self-assembling ferritin nanoparticles coupled with linear sequences from canine distemper virus haemagglutinin protein elicit robust immune responses. J. Nanobiotechnol. 2022, 20, 32.

23
Qiao, Y. B.; Jin, S. H.; Nie, J. J.; Chang, Y. T.; Wang, B.; Guan, S. S.; Li, Q. H.; Shi, Y. H.; Kong, W.; Shan, Y. M. Hemagglutinin-based DNA vaccines containing trimeric self-assembling nanoparticles confer protection against influenza. J. Leukocyte Biol., in press, https://doi.org/10.1002/jlb.6a1021-535r.
DOI
24

Qiao, Y. B.; Li, S.; Jin, S. H.; Pan, Y.; Shi, Y. H.; Kong, W.; Shan, Y. M. A self-assembling nanoparticle vaccine targeting the conserved epitope of influenza virus hemagglutinin stem elicits a cross-protective immune response. Nanoscale 2022, 14, 3250–3260.

25

Kavian, N.; Hachim, A.; Cowling, B. J.; Valkenburg, S. A. Repeated influenza vaccination provides cumulative protection from distinct H3N2 viruses. Clin. Transl. Immunol. 2021, 10, e1297.

26

Srivastava, V.; Yang, Z.; Hung, I. F. N.; Xu, J. Q.; Zheng, B. J.; Zhang, M. Y. Identification of dominant antibody-dependent cell-mediated cytotoxicity epitopes on the hemagglutinin antigen of pandemic H1N1 influenza virus. J. Virol. 2013, 87, 5831–5840.

27

Kalaiyarasu, S.; Bhatia, S.; Mishra, N.; Senthil Kumar, D.; Kumar, M.; Sood, R.; Rajukumar, K.; Ponnusamy, B.; Desai, D.; Singh, V. P. Elicitation of highly pathogenic avian influenza H5N1 M2e and HA2-specific humoral and cell-mediated immune response in chicken following immunization with recombinant M2e-HA2 fusion protein. Front. Vet. Sci. 2020, 7, 571999.

28

Qi, M.; Zhang, X. E.; Sun, X. X.; Zhang, X. W.; Yao, Y. F.; Liu, S. L.; Chen, Z.; Li, W.; Zhang, Z. P.; Chen, J. J. et al. Intranasal nanovaccine confers homo- and hetero-subtypic influenza protection. Small 2018, 14, 1703207.

29

Wang, T. T.; Tan, G. S.; Hai, R.; Pica, N.; Ngai, L.; Ekiert, D. C.; Wilson, I. A.; Garcia-Sastre, A.; Moran, T. M.; Palese, P. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl. Acad. Sci. USA 2010, 107, 18979–18984.

30

Powell, A. E.; Zhang, K. M.; Sanyal, M.; Tang, S. G.; Weidenbacher, P. A.; Li, S. S.; Pham, T. D.; Pak, J. E.; Chiu, W.; Kim, P. S. A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. ACS Cent. Sci. 2021, 7, 183–199.

31

Gong, X.; Yin, H.; Shi, Y. H.; He, X. Q.; Yu, Y. J.; Guan, S. S.; Kuai, Z. Y.; Haji, N. M.; Haji, N. M.; Kong, W. et al. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus p particle immunogen displaying influenza HA2 from subtypes H1, H3 and B. Emerg. Microbes Infect. 2016, 5, e51.

32

Impagliazzo, A.; Milder, F.; Kuipers, H.; Wagner, M. V.; Zhu, X. Y.; Hoffman, R. M. B.; van Meersbergen, R.; Huizingh, J.; Wanningen, P.; Verspuij, J. et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 2015, 349, 1301–1306.

33

Kang, S.; Kim, Y.; Shin, Y.; Song, J. J.; Jon, S. Antigen-presenting, self-assembled protein nanobarrels as an adjuvant-free vaccine platform against influenza virus. ACS Nano 2021, 15, 10722–10732.

34

Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M.; Zhang, L. F. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015, 15, 1403–1409.

35

Ming, F. P.; Yang, J.; Chu, P. P.; Ma, M. P.; Shi, J. Q.; Cai, H. M.; Huang, C. Y.; Li, H. Z.; Jiang, Z. G.; Wang, H. G. et al. Immunization of aged pigs with attenuated pseudorabies virus vaccine combined with CpG oligodeoxynucleotide restores defective Th1 immune responses. PLoS One 2013, 8, e65536.

36
Kolpe A. Schepens B. Fiers W. Saelens X.  M2-basedinfluenza vaccines: Recent advances and clinical potential Expert Rev. Vaccines 2017 16 123 136 10.1080/14760584.2017.1240041

Kolpe, A.; Schepens, B.; Fiers, W.; Saelens, X. M2-based influenza vaccines: Recent advances and clinical potential. Expert Rev. Vaccines 2017, 16, 123–136.

37

Chen, S. H.; Zheng, D.; Li, C. G.; Zhang, W. J.; Xu, W. T.; Liu, X. Y.; Fang, F.; Chen, Z. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope. Biomed Res. Int. 2015, 2015, 901817.

38

Lee, J. S.; Chowdhury, M. Y. E.; Moon, H. J.; Choi, Y. K.; Talactac, M. R.; Kim, J. H.; Park, M. E.; Son, H. Y.; Shin, K. S.; Kim, C. J. The highly conserved HA2 protein of the influenza a virus induces a cross protective immune response. J. Virol. Methods 2013, 194, 280–288.

39

Sakala, I. G.; Honda-Okubo, Y.; Li, L.; Baldwin, J.; Petrovsky, N. A M2 protein-based universal influenza vaccine containing Advax-SM adjuvant provides newborn protection via maternal or neonatal immunization. Vaccine 2021, 39, 5162–5172.

40

Poon, L. L. M.; Leung, Y. H. C.; Nicholls, J. A.; Perera, P. Y.; Lichy, J. H.; Yamamoto, M.; Waldmann, T. A.; Peiris, J. S. M.; Perera, L. P. Vaccinia virus-based multivalent H5N1 avian influenza vaccines adjuvanted with IL-15 confer sterile cross-clade protection in mice. J. Immunol. 2009, 182, 3063–3071.

41

Wang, W. J.; Zhou, X. X.; Bian, Y. J.; Wang, S.; Chai, Q.; Guo, Z. Q.; Wang, Z. N.; Zhu, P.; Peng, H.; Yan, X. Y. et al. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nature Nanotechnology 2020, 15, 406–416.

42

Corbett, K. S.; Moin, S. M.; Yassine, H. M.; Cagigi, A.; Kanekiyo, M.; Boyoglu-Barnum, S.; Myers, S. I.; Tsybovsky, Y.; Wheatley, A. K.; Schramm, C. A. et al. Design of nanoparticulate group 2 influenza virus hemagglutinin stem antigens that activate unmutated ancestor B cell receptors of broadly neutralizing antibody lineages. Mbio 2019, 10, e02810–18.

43

Ma, X. C.; Zou, F.; Yu, F.; Li, R.; Yuan, Y. C.; Zhang, Y. W.; Zhang, X. T.; Deng, J. Y.; Chen, T.; Song, Z. et al. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity 2020, 53, 1315–1330.e9.

44

Zykova, A. A.; Blokhina, E. A.; Stepanova, L. A.; Shuklina, M. A.; Tsybalova, L. M.; Kuprianov, V. V.; Ravin, N. V. Nanoparticles based on artificial self-assembling peptide and displaying M2e peptide and stalk HA epitopes of influenza A virus induce potent humoral and T-cell responses and protect against the viral infection. Nanomedicine 2022, 39, 102463.

45

Panagioti, E.; Klenerman, P.; Lee, L. N.; van der Burg, S. H.; Arens, R. Features of effective T cell-inducing vaccines against chronic viral infections. Front. Immunol. 2018, 9, 276.

46

Qu, Z. H.; Guo, Y. L.; Li, M. Z.; Cao, C.; Wang, J. W.; Gao, M. C. Recombinant ferritin nanoparticles can induce dendritic cell maturation through TLR4/NF-κB pathway. Biotechnol. Lett. 2020, 42, 2489–2500.

47

Joyce, M. G.; King, H. A. D.; Elakhal-Naouar, I.; Ahmed, A.; Peachman, K. K.; Cincotta, C. M.; Subra, C.; Chen, R. E.; Thomas, P. V.; Chen, W. H. et al. A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Sci. Transl. Med. 2022, 14, eabi5735.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2022
Revised: 27 April 2022
Accepted: 28 April 2022
Published: 01 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 31770996).

Return