Journal Home > Volume 15 , Issue 8

Aqueous rechargeable Zn-ion batteries are regarded as a promising alternative to lithium-ion batteries owing to their high energy density, low cost, and high safety. However, their commercialization is severely restricted by the Zn dendrite formation and side reactions. Herein, we propose that these issues can be minimized by modifying the interfacial properties through introducing electrochemically inert Al2O3 nanocoatings on Zn meal anodes (Al2O3@Zn). The Al2O3 nanocoatings can effectively suppress both the dendrite growth and side reactions. As a result, the Al2O3@Zn symmetric cells show excellent electrochemical performance with a long lifespan of more than 4,000 h at 1 mA·cm−2 and 1 mAh·cm−2. Meanwhile, the assembled Al2O3@Zn//V2O5 full cells can deliver a high capacity (236.2 mAh·g−1) and long lifespan with a capacity retention of 76.11% after 1,000 cycles at 4 A·g−1.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings

Show Author's information Rui Wang1Qiongfei Wu1Minjie Wu1Jiaxian Zheng1Jian Cui2Qi Kang3( )Zhengbing Qi2( )JiDong Ma2Zhoucheng Wang1Hanfeng Liang1( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Aqueous rechargeable Zn-ion batteries are regarded as a promising alternative to lithium-ion batteries owing to their high energy density, low cost, and high safety. However, their commercialization is severely restricted by the Zn dendrite formation and side reactions. Herein, we propose that these issues can be minimized by modifying the interfacial properties through introducing electrochemically inert Al2O3 nanocoatings on Zn meal anodes (Al2O3@Zn). The Al2O3 nanocoatings can effectively suppress both the dendrite growth and side reactions. As a result, the Al2O3@Zn symmetric cells show excellent electrochemical performance with a long lifespan of more than 4,000 h at 1 mA·cm−2 and 1 mAh·cm−2. Meanwhile, the assembled Al2O3@Zn//V2O5 full cells can deliver a high capacity (236.2 mAh·g−1) and long lifespan with a capacity retention of 76.11% after 1,000 cycles at 4 A·g−1.

Keywords: interface engineering, side reactions, aqueous Zn-ion batteries, Zn dendrites, Al2O3 protective nanocoatings

References(45)

1

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

2

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

3

Zhuang, Z. H.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

4

Liang, J.; Zhu, G. Y.; Zhang, Y. Z.; Liang, H. F.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 2022, 15, 2023–2029.

5

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

6

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

7

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

8

Zhang, J. Y.; Xia, C.; Wang, H. F.; Tang, C. Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 2022, 67, 432–450.

9

Liu, C. X.; Zhang, M. L.; Li, J. W.; Xue, W. Q.; Zheng, T. T.; Xia, C.; Zeng, J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C–C coupling. Angew. Chem., Int. Ed. 2022, 61, e202113498.

10

Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

11

Wang, L. G.; Liu, T. F.; Wu, T. P.; Lu, J. Exploring new battery knowledge by advanced characterizing technologies. Exploration 2021, 1, 20210130.

12

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater 2018, 30, 1800561.

13

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

14

Zhang, Y. Z.; Liang, J.; Huang, Z. H.; Wang, Q.; Zhu, G. Y.; Dong, S. Y.; Liang, H. F.; Dong, X. C. Ionically conductive tunnels in h-WO3 enable high-rate NH4+ storage. Adv. Sci. 2022, 9, 2105158.

15

Shin, J.; Choi, J. W. Opportunities and reality of aqueous rechargeable batteries. Adv. Energy Mater. 2020, 10, 2001386.

16

Liu, J. L.; Xu, C. H.; Chen, Z.; Ni, S. B.; Shen, Z. X. Progress in aqueous rechargeable batteries. Green Energy Environ. 2018, 3, 20–41.

17

Liang, H. F.; Cao, Z.; Ming, F. W.; Zhang, W. L.; Anjum, D. H.; Cui, Y.; Cavallo, L.; Alshareef, H. N. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 2019, 19, 3199–3206.

18

Ming, J.; Guo, J.; Xia, C.; Wang, W. X.; Alshareef, H. N. Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R Rep. 2019, 135, 58–84.

19

Xia, C.; Guo, J.; Lei, Y. J.; Liang, H. F.; Zhao, C.; Alshareef, H. N. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2018, 30, 1705580.

20

Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021, 14, 754–761.

21

Ren, H.; Zhao, J.; Yang, L.; Liang, Q. H.; Madhavi, S.; Yan, Q. Y. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019, 12, 1347–1353.

22

Li, Q.; Zhao, Y. W.; Mo, F. N.; Wang, D. H.; Yang, Q.; Huang, Z. D.; Liang, G. J.; Chen, A.; Zhi, C. Y. Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2020, 2, e12035.

23

Xie, C. L.; Li, Y. H.; Wang, Q.; Sun, D.; Tang, Y. G.; Wang, H. Y. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy 2020, 2, 540–560.

24
Zheng, J. X.; Huang, Z. H.; Ming, F. W.; Zeng, Y.; Wei, B. B.; Jiang, Q.; Qi, Z. B.; Wang, Z. C.; Liang, H. F. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries. Small, in press, https://doi.org/10.1002/smll.202200006.
25

Zhang, T. S.; Tang, Y.; Guo, S.; Cao, X. X.; Pan, A. Q.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625–4665.

26

Wu, B. K.; Luo, W.; Li, M.; Zeng, L.; Mai, L. Q. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021, 14, 3174–3187.

27

Wang, Y. Z.; Guo, T. C.; Yin, J.; Tian, Z. N.; Ma, Y. C.; Liu, Z. X.; Zhu, Y. P.; Alshareef, H. N. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 2022, 34, 2106937.

28

Zhu, M. S.; Hu, J. P.; Lu, Q. Q.; Dong, H. Y.; Karnaushenko, D. D.; Becker, C.; Karnaushenko, D.; Li, Y.; Tang, H. M.; Qu, Z.; et al. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 2021, 33, 2007497.

29

Zheng, J. X.; Huang, Z. H.; Zeng, Y.; Liu, W. Q.; Wei, B. B.; Qi, Z. B.; Wang, Z. C.; Xia, C.; Liang, H. F. Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 2022, 22, 1017–1023.

30

Zheng, J. X.; Cao, Z.; Ming, F. W.; Liang, H. F.; Qi, Z. B.; Liu, W. Q.; Xia, C.; Chen, C. X.; Cavallo, L.; Wang, Z. C.; et al. Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 2022, 7, 197–203.

31

Li, B.; Xue, J.; Han, C.; Liu, N.; Ma, K.; Zhang, R.; Wu, X.; Dai, L.; Wang, L.; He, Z. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J. Colloid Interface Sci. 2021, 599, 467–475.

32

Negi, R. S.; Celik, E.; Pan, R. J.; Stäglich, R.; Senker, J. R.; Elm, M. T. Insights into the positive effect of post-annealing on the electrochemical performance of Al2O3-coated Ni-rich NCM cathodes for lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 3369–3380.

33

Kim, D. S.; Kim, Y. E.; Kim, H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J. Power Sources 2019, 422, 18–24.

34

Lu, H. Y.; Chen, X. Y.; Jia, Y. L.; Chen, H.; Wang, Y. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon–electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903.

35

Wu, Z. H.; Zhang, X. D.; Deng, L. J.; Zhang, Y. S.; Wang, Z.; Shen, Y. L.; Shao, G. S. Atomic layer coated Al2O3 on nitrogen doped vertical graphene nanosheets for high performance sodium ion batteries. Energy Environ. Mater. 2022, 5, 285–294.

36

He, H. B.; Tong, H.; Song, X. Y.; Song, X. P.; Liu, J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 7836–7846.

37

Dong, S. D.; Zhou, Y.; Hai, C. X.; Zeng, J. B.; Sun, Y. X.; Ma, Y. F.; Shen, Y.; Li, X.; Ren, X. F.; Sun, C. et al. Enhanced cathode performance: Mixed Al2O3 and LiAlO2 coating of Li12Ni0.13Co0.13Mn0.54O2. ACS Appl. Mater. Interfaces 2020, 12, 38153–38162.

38

Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.

39

Jung, S. C.; Kim, H. J.; Choi, J. W.; Han, Y. K. Sodium ion diffusion in Al2O3: A distinct perspective compared with lithium ion diffusion. Nano Lett. 2014, 14, 6559–6563.

40

Zeng, Z. S.; Zeng, Y. H.; Sun, L. N.; Mi, H. W.; Deng, L. B.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: The effect of the induced orientation growth of the Zn anode. Nanoscale 2021, 13, 12223–12232.

41

Zhang, Q.; Luan, J. Y.; Huang, X. B.; Wang, Q.; Sun, D.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.

42

Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 2020, 30, 1908528.

43

Liu, H. Y.; Wang, J. G.; Hua, W.; Sun, H. H.; Huyan, Y.; Tian, S.; Hou, Z. D.; Yang, J. C.; Wei, C. G.; Kang, F. Y. Building ohmic contact interfaces toward ultrastable Zn metal anodes. Adv. Sci. 2021, 8, 2102612.

44

Bin, D.; Huo, W. C.; Yuan, Y. B.; Huang, J. H.; Liu, Y.; Zhang, Y. X.; Dong, F.; Wang, Y. G.; Xia, Y. Y. Organic–inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 2020, 6, 968–984.

45

Hu, P.; Zhu, T.; Ma, J. X.; Cai, C. C.; Hu, G. W.; Wang, X. P.; Liu, Z. A.; Zhou, L.; Mai, L. Q. Porous V2O5 microspheres: A high-capacity cathode material for aqueous zinc-ion batteries. Chem. Commun. 2019, 55, 8486–8489.

File
12274_2022_4477_MOESM1_ESM.pdf (844.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 April 2022
Revised: 26 April 2022
Accepted: 27 April 2022
Published: 20 June 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51601163, 22001081, and 22075236), the National Key Research and Development Program of China (No. 2017YFE0198100), the Natural Science Foundation of Fujian Province (No. 2021J011211), Xiamen Municipal Bureau of Science and Technology (No. 3502Z20206070), and Xiamen University.

Return