Journal Home > Volume 15 , Issue 12

Single-atom catalysts (SACs), with the utmost atom utilization, have attracted extensive interests for various catalytic applications. The coordination environment of SACs has been recognized to play a vital role in catalysis while their precise regulation at atomic level remains an immense challenge. Herein, a post metal halide modification (PMHM) strategy has been developed to construct Ni-N4 sites with axially coordinated halogen atoms, named Ni1-N-C (X) (X = Cl, Br, and I), on pre-synthetic nitrogen-doped carbon derived from metal–organic frameworks. The axial halogen atoms with distinct electronegativity can break the symmetric charge distribution of planar Ni-N4 sites and regulate the electronic states of central Ni atoms in Ni1-N-C (X) (X = Cl, Br, and I). Significantly, the Ni1-N-C (Cl) catalyst, decorated with the most electronegative Cl atoms, exhibits Faradaic efficiency of CO up to 94.7% in electrocatalytic CO2 reduction, outperforming Ni1-N-C (Br) and Ni1-N-C (I) catalysts. Moreover, Ni1-N-C (Cl) also presents superb performance in Zn-CO2 battery with ultrahigh CO selectivity and great durability. Theoretical calculations reveal that the axially coordinated Cl atom remarkably facilitates *COOH intermediate formation on single-atom Ni sites, thereby boosting the CO2 reduction performance of Ni1-N-C (Cl). This work offers a facile strategy to tailor the axial coordination environments of SACs at atomic level and manifests the crucial role of axial coordination microenvironments in catalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction

Show Author's information Jia-Xin Peng1Weijie Yang2Zhenhe Jia2Long Jiao1( )Hai-Long Jiang1( )
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China

Abstract

Single-atom catalysts (SACs), with the utmost atom utilization, have attracted extensive interests for various catalytic applications. The coordination environment of SACs has been recognized to play a vital role in catalysis while their precise regulation at atomic level remains an immense challenge. Herein, a post metal halide modification (PMHM) strategy has been developed to construct Ni-N4 sites with axially coordinated halogen atoms, named Ni1-N-C (X) (X = Cl, Br, and I), on pre-synthetic nitrogen-doped carbon derived from metal–organic frameworks. The axial halogen atoms with distinct electronegativity can break the symmetric charge distribution of planar Ni-N4 sites and regulate the electronic states of central Ni atoms in Ni1-N-C (X) (X = Cl, Br, and I). Significantly, the Ni1-N-C (Cl) catalyst, decorated with the most electronegative Cl atoms, exhibits Faradaic efficiency of CO up to 94.7% in electrocatalytic CO2 reduction, outperforming Ni1-N-C (Br) and Ni1-N-C (I) catalysts. Moreover, Ni1-N-C (Cl) also presents superb performance in Zn-CO2 battery with ultrahigh CO selectivity and great durability. Theoretical calculations reveal that the axially coordinated Cl atom remarkably facilitates *COOH intermediate formation on single-atom Ni sites, thereby boosting the CO2 reduction performance of Ni1-N-C (Cl). This work offers a facile strategy to tailor the axial coordination environments of SACs at atomic level and manifests the crucial role of axial coordination microenvironments in catalysis.

Keywords: CO2 electroreduction, metal–organic frameworks, single-atom catalysts, axial coordination environment

References(58)

[1]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[2]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[3]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[4]

Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

[5]

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

[6]

Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

[7]

Yi, J. D.; Xu, R.; Wu. Q.; Zhang, T.; Zang, K. T.; Luo, J.; Liang, Y. L.; Huang, Y. B.; Cao, R. Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 2018, 3, 883–889.

[8]

Yang, S. X.; Yu, Y. H.; Dou, M. L.; Zhang, Z. P.; Dai, L. M.; Wang, F. Two-dimensional conjugated aromatic networks as high-site-density and single-atom electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 14724–14730.

[9]

Zhang, J.; Wang, Y. X.; Yang, C. J.; Chen, S. A.; Li, Z. J.; Cheng, Y.; Wang, H. N.; Xiang, Y.; Lu, S. F.; Wang, S. Y. Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts. Nano Res. 2021, 14, 4650–4657.

[10]

Lin, L. L.; Yu, Q. L.; Peng, M.; Li, A. W.; Yao, S. Y.; Tian, S. H.; Liu, X.; Li, A.; Jiang, Z.; Gao, R. et al. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. J. Am. Chem. Soc. 2021, 143, 309–317.

[11]

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

[12]

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

[13]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[14]

Zhu, Y. Z.; Sokolowski, J.; Song, X. C.; He, Y. H.; Mei, Y.; Wu, G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.

[15]

Yang, Q.; Jia, Y.; Wei, F. F.; Zhuang, L. Z.; Yang, D. J.; Liu, J. Z.; Wang, X.; Lin, S.; Yuan, P.; Yao, X. D. Understanding the activity of Co-N4−xCx in atomic metal catalysts for oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 6122–6127.

[16]

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu. Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[17]

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

[18]

Daiyan, R.; Zhu, X. F.; Tong, Z. Z.; Gong, L. L.; Razmjou, A.; Liu, R. S.; Xia, Z. H.; Lu, X. Y.; Dai, L. M.; Amal, R. Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy 2020, 78, 105213.

[19]

Gao, D. F.; Liu, T. F.; Wang, G. X.; Bao, X. H. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 2021, 6, 713–727.

[20]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[21]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[22]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[23]

Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 2019, 9, 7270–7284.

[24]

Yang, H. Z.; Shi, R.; Shang, L.; Zhang, T. R. Recent advancements of porphyrin-like single-atom catalysts: Synthesis and applications. Small Struct. 2021, 2, 2100007.

[25]

Huang, M.; Deng, B. W.; Zhao, X. L.; Zhang, Z. Y.; Li, F.; Li, K. L.; Cui, Z. H.; Kong, L. X.; Lu, J. M; Dong, F. et. al. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 2022, 16, 2110–2119.

[26]

Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.

[27]

Jing, H. Y.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Liu, W.; Li, N. N.; Hao, C.; Shi, Y. T.; Wang, D. S. Atomic evolution of metal–organic frameworks into Co–N3 coupling vacancies by cooperative cascade protection strategy for promoting triiodide reduction. J. Phys. Chem. C 2021, 125, 6147–6156.

[28]

Zhi, Q. J.; Jiang, R.; Liu, W. P.; Sun, T. T.; Wang, K.; Jiang, J. Z. Atomic CoN3S1 sites for boosting oxygen reduction reaction via an atomic exchange strategy. Nano Res. 2022, 15, 1803–1808.

[29]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[30]

Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

[31]

Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

[32]

Wang, X. Y.; Wang, Y.; Sang, X. H.; Zheng, W. Z.; Zhang, S. H.; Shuai, L.; Yang, B.; Li, Z. J.; Chen, J. M.; Lei, L. C. et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4192–4198.

[33]

Chen, Z. Q.; Huang, A. J.; Yu, K.; Cui, T. T.; Zhuang, Z. W.; Liu, S. J.; Li, J. Z.; Tu, R. Y.; Sun, K. A.; Tan, X. et al. Fe1N4-O1 site with axial Fe-O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 2021, 14, 3430–3437.

[34]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science, 2013, 341, 1230444.

[35]

Zhou, H. C. J.; Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

[36]

Islamoglu, T.; Goswami, S.; Li, Z. Y.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Postsynthetic tuning of metal–organic frameworks for targeted applications. Acc. Chem. Res. 2017, 50, 805–813.

[37]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal–organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[38]

Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal–organic framework materials for gas separation. Chem 2020, 6, 337–363.

[39]

Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Tabassum, H.; Gao, S.; Zou, R. Q. Metal–organic framework-based materials for energy conversion and storage. ACS Energy Lett. 2020, 5, 520–532.

[40]

Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027.

[41]

Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

[42]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[43]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[44]

Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu. Q. Metal–organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

[45]

Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

[46]

Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053.

[47]

Stavretis, S. E.; Atanasov, M.; Podlesnyak, A. A.; Hunter, S. C.; Neese, F.; Xue, Z. L. Magnetic transitions in iron porphyrin halides by inelastic neutron scattering and ab initio studies of zero-field splittings. Inorg. Chem. 2015, 54, 9790–9801.

[48]

Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal–organic frameworks: Zinc(Ⅱ) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 45, 1557–1559.

[49]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA. 2006, 103, 10186–10191.

[50]

Matienzo, J.; Yin, L. I.; Grim, S. O.; Swartz, W. E. Jr. X-ray photoelectron spectroscopy of nickel compounds. Inorg. Chem. 1973, 12, 2762–2769.

[51]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[52]

Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.

[53]

Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl. Catal. B 2011, 106, 445–452.

[54]

Fan, Q.; Huang, J. W.; Dong, N. N.; Hong, S.; Yan, C.; Liu, Y. C.; Qiu, J. S.; Wang, J.; Sun, Z. Y. Liquid exfoliation of two-dimensional PbI2 nanosheets for ultrafast photonics. ACS Photonics 2019, 6, 1051–1057.

[55]

Xie, J. F.; Zhou, Z.; Wang, Y. B. Metal-CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 2020, 30, 1908285.

[56]

Liu, M.; Pang, Y. J.; Zhang, B.; Luna, P. D.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

[57]

Sun, S. N.; Li, N.; Liu, J.; Ji, W. X.; Dong, L. Z.; Wang, Y. R.; Lan Y. Q. Identification of the activity source of CO2 electroreduction by strategic catalytic site distribution in stable supramolecular structure system. Natl. Sci. Rev. 2021, 8, nwaa195.

[58]

Zheng, T. T.; Jiang, K.; Wang, H. T. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 2018, 30, 1802066.

File
12274_2022_4467_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 March 2022
Revised: 20 April 2022
Accepted: 21 April 2022
Published: 21 June 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1500402), the National Natural Science Foundation of China (NSFC) (Nos. 21725101, 21871244, and 22001242), International Partnership Program of Chinese Academy of Sciences (CAS) (No. 211134KYSB20190109), Collaborative Innovation Program of Hefei Science Center, CAS (No. 2020HSC-CIP005), and the Fundamental Research Funds for the Central Universities (Nos. WK2060000038 and WK2060000040). We thank the XAFS measurements from 1W1B station at BSRF.

Return