Journal Home > Volume 15 , Issue 8

Quantum dots color conversion (QDCC) is considered as a facial and versatile way to achieve full-color organic light emitting diode (OLED) and micro-LED display due to the wide color gamut performance and easy integration. However, the aggregation of QDs and coffee-ring effects after solvent evaporation lowers the light conversion efficiency and emission uniformity in QDs microarrays, raising blue-light leakage or optical crosstalk. Here, we report the fabrication of perovskite quantum dots (PQDs) microarrays by combining the inkjet printing and in situ fabrication of PQDs during the photopolymerization of precursor ink. The resulting PQDs microarrays exhibit three-dimensional (3D) morphology with hemisphere shape as well as strong photoluminescence, which is desirable for QDCC applications. We demonstrate the dominant role of ultraviolet (UV) curable precursors and surface functionalized substrate in controlling the shape of microarrays, where significantly increased contact angle (100°) and large height to diameter ratio (0.42) can be achieved. We further demonstrate the potential use of the in situ direct print photopolymerization method for fabricating large-area multicolor patterned pixel microarrays with a wide color gamut and high resolution. The fabrication of 3D PQDs microarrays opens up new opportunities in a variety of applications including photonics integration, micro-LED, and near-field display.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Perovskite quantum dot microarrays: In situ fabrication via direct print photopolymerization

Show Author's information Xiu Liu1,§Jianjun Li1,§Pingping Zhang2Weitong Lu2Gaoling Yang1,3( )Haizheng Zhong2Yuejin Zhao1( )
School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology, Beijing 100081, China
MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices, Beijing 100081, China

§ Xiu Liu and Jianjun Li contributed equally to this work.

Abstract

Quantum dots color conversion (QDCC) is considered as a facial and versatile way to achieve full-color organic light emitting diode (OLED) and micro-LED display due to the wide color gamut performance and easy integration. However, the aggregation of QDs and coffee-ring effects after solvent evaporation lowers the light conversion efficiency and emission uniformity in QDs microarrays, raising blue-light leakage or optical crosstalk. Here, we report the fabrication of perovskite quantum dots (PQDs) microarrays by combining the inkjet printing and in situ fabrication of PQDs during the photopolymerization of precursor ink. The resulting PQDs microarrays exhibit three-dimensional (3D) morphology with hemisphere shape as well as strong photoluminescence, which is desirable for QDCC applications. We demonstrate the dominant role of ultraviolet (UV) curable precursors and surface functionalized substrate in controlling the shape of microarrays, where significantly increased contact angle (100°) and large height to diameter ratio (0.42) can be achieved. We further demonstrate the potential use of the in situ direct print photopolymerization method for fabricating large-area multicolor patterned pixel microarrays with a wide color gamut and high resolution. The fabrication of 3D PQDs microarrays opens up new opportunities in a variety of applications including photonics integration, micro-LED, and near-field display.

Keywords: perovskite, quantum dots, inkjet printing, in situ fabrication , microarrays

References(48)

1

Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 2010, 22, 3076–3080.

2

Hu, Z. P.; Yin, Y. M.; Ali, M. U.; Peng, W. X.; Zhang, S. J.; Li, D. Z.; Zou, T. Y.; Li, Y. Y.; Jiao, S. B.; Chen, S. J. et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 2020, 12, 2103–2110.

3

Huang, Y. G.; Hsiang, E. L.; Deng, M. Y.; Wu, S. T. Mini-LED, micro-LED and OLED displays: Present status and future perspectives. Light. Sci. Appl. 2020, 9, 105.

4

Liu, Z. J.; Lin, C. H.; Hyun, B. R.; Sher, C. W.; Lv, Z. J.; Luo, B. Q.; Jiang, F. L.; Wu, T.; Ho, C. H.; Kuo, H. C. et al. Micro-light-emitting diodes with quantum dots in display technology. Light. Sci. Appl. 2020, 9, 83.

5

Dey, A.; Ye, J. Z.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z. Y.; Yin, J.; Wang, Y. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 2021, 15, 10775–10981.

6

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

7

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

8

Maes, J.; Balcaen, L.; Drijvers, E.; Zhao, Q.; De Roo, J.; Vantomme, A.; Vanhaecke, F.; Geiregat, P.; Hens, Z. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3093–3097.

9

Yang, H. J.; Cai, T.; Liu E. X.; Hill-Kimball K.; Gao J. B.; Chen O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.

10

Duan, M.; Feng, Z. Y.; Wu, Y. W.; Yin, Y. M.; Hu, Z. P.; Peng, W. X.; Li, D. Z.; Chen, S. J.; Lee, C. Y.; Lien, A. Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv. Mater. Technol. 2019, 4, 1900779.

11

Yin, Y. M.; Hu, Z. P.; Ali, M. U.; Duan, M.; Gao, L.; Liu, M.; Peng, W. X.; Geng, J.; Pan, S.; Wu, Y. W. et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv. Mater. Technol. 2020, 5, 2000251.

12

Chen, E. G.; Lin, J. Y.; Yang, T.; Chen, Y.; Zhang, X.; Ye, Y.; Sun, J.; Yan, Q.; Guo, T. L. Asymmetric quantum-dot pixelation for color-converted white balance. ACS Photonics 2021, 8, 2158–2165.

13

Chen, M. J.; Yang, J.; Wang, Z. Y.; Xu, Z. Y.; Lee, H.; Lee, H.; Zhou, Z. W.; Feng, S. P.; Lee, S.; Pyo, J. et al. 3D nanoprinting of perovskites. Adv. Mater. 2019, 31, e1904073.

14

Bae, J.; Lee, S.; Ahn, J.; Kim, J. H.; Wajahat, M.; Chang, W. S.; Yoon, S. Y.; Kim, J. T.; Seol, S. K.; Pyo, J. 3D-printed quantum dot nanopixels. ACS Nano 2020, 14, 10993–11001.

15

Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414.

16

De Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213.

17

Tekin, E.; Smith, P. J.; Schubert, U. S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 2008, 4, 703–713.

18

Xuan, T. T.; Shi, S. C.; Wang, L.; Kuo, H. C.; Xie, R. J. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J. Phys. Chem. Lett. 2020, 11, 5184–5191.

19

Li, H. G.; Duan, Y. Q.; Shao, Z. L.; Zhang, G. N.; Li, H. Y.; Huang, Y. A.; Yin, Z. P. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv. Mater. Technol. 2020, 5, 2000401.

20

Gao, Y. Y.; Kang, C. B.; Prodanov, M. F.; Vashchenko, V. V.; Srivastava, A. K. Inkjet-printed, flexible full-color photoluminescence-type color filters for displays. Adv. Eng. Mater. 2022, 2101553.

21

Li, D. Y.; Wang, J. J.; Li, M. Z.; Xie, G. C.; Guo, B.; Mu, L.; Li, H. Y.; Wang, J.; Yip, H. L.; Peng, J. B. Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 2020, 5, 2000099.

22

Li, Y.; Chen, Z. W.; Liang, D.; Zang, J. Q.; Song, Z. H.; Cai, L.; Zou, Y. T.; Wang, X. C.; Wang, Y. S.; Li, P. D. et al. Coffee-stain-free perovskite film for efficient printed light-emitting diode. Adv. Opt. Mater. 2021, 9, 2100553.

23

Li, H. G.; Duan, Y. Q.; Shao, Z. L.; Zhang, G. N.; Li, H. Y.; Huang, Y. A.; Yin, Z. P. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv. Mater. Technol. 2020, 5, 2000401.

24

Shi, L. F.; Meng, L. H.; Jiang, F.; Ge, Y.; Li, F.; Wu, X. G.; Zhong, H. Z. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 2019, 29, 1903648.

25

Liu, Y.; Li, F. S.; Qiu, L. C.; Yang, K. Y.; Li, Q. Q.; Zheng, X.; Hu, H. L.; Guo, T. L.; Wu, C. X.; Kim, T. W. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano 2019, 13, 2042–2049.

26

Zhu, M. H.; Duan, Y. Q.; Liu, N.; Li, H. G.; Li, J. H.; Du, P. P.; Tan, Z. F.; Niu, G. D.; Gao, L.; Huang, Y. A. et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv. Funct. Mater. 2019, 29, 1903294.

27

Shi, S. C.; Bai, W. H.; Xuan, T. T.; Zhou, T. L.; Dong, G. Y.; Xie, R. J. In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks. Small Methods 2021, 5, 2000889.

28

Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163–9168.

29

Huang, X. J.; Guo, Q. Y.; Yang, D. D.; Xiao, X. D.; Liu, X. F.; Xia, Z. G.; Fan, F. J.; Qiu, J. R.; Dong, G. P. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 2020, 14, 82–88.

30

Chen, X. M.; Zhang, F.; Ge, Y.; Shi, L. F.; Huang, S.; Tang, J. L.; Lv, Z.; Zhang, L.; Zou, B. S.; Zhong, H. Z. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: Nonstoichiometry induced transformation and light-emitting applications. Adv. Funct. Mater. 2018, 28, 1706567.

31

Meng, L. H.; Yang, C. G.; Meng, J. J.; Wang, Y. Z.; Ge, Y.; Shao, Z. Q.; Zhang, G. F.; Rogach, A. L.; Zhong, H. Z. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Res. 2019, 12, 1411–1416.

32

Gao, A. J.; Yan, J.; Wang, Z. J.; Liu, P.; Wu, D.; Tang, X. B.; Fang, F.; Ding, S. H.; Li, X.; Sun, J. Y. et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale 2020, 12, 2569–2577.

33

Jeon, S.; Lee, S. Y.; Kim, S. K.; Kim, W.; Park, T.; Bang, J.; Ahn, J.; Woo, H. K.; Chae, J. Y.; Paik, T. et al. All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv. Opt. Mater. 2020, 8, 2000501.

34

Yang, P. H.; Zhang, L.; Kang, D. J.; Strahl, R.; Kraus, T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 2020, 8, 1901429.

35

Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

36

Sun, J. Z.; Bao, B.; He, M.; Zhou, H. H.; Song, Y. L. Recent advances in controlling the depositing morphologies of inkjet droplets. ACS Appl. Mater. Interfaces 2015, 7, 28086–28099.

37

Yagci, Y.; Jockusch, S.; Turro, N. J. Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260.

38

Farahani, R. D.; Dubé, M.; Therriault, D. Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 2016, 28, 5794–5821.

39

Corrigan, N.; Yeow, J.; Judzewitsch, P.; Xu, J. T.; Boyer, C. Seeing the light: Advancing materials chemistry through photopolymerization. Angew. Chem., Int. Ed. 2019, 58, 5170–5189.

40

Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A. et al. Continuous liquid interface production of 3D objects. Science 2015, 347, 1349–1352.

41

Elliott, A. M.; Ivanova, O. S.; Williams, C. B.; Campbell, T. A. Inkjet printing of quantum dots in photopolymer for use in additive manufacturing of nanocomposites. Adv. Eng. Mater. 2013, 15, 903–907.

42

Smith, M. J.; Malak, S. T.; Jung, J.; Yoon, Y. J.; Lin, C. H.; Kim, S.; Lee, K. M.; Ma, R. L.; White, T. J.; Bunning, T. J. et al. Robust, uniform, and highly emissive quantum dot-polymer films and patterns using thiol-ene chemistry. ACS Appl. Mater. Interfaces 2017, 9, 17435–17448.

43

Hyun, B. R.; Sher, C. W.; Chang, Y. W.; Lin, Y. H.; Liu, Z. J.; Kuo, H. C. Dual role of quantum dots as color conversion layer and suppression of input light for full-color micro-LED displays. J. Phys. Chem. Lett. 2021, 12, 6946–6954.

44

Li, H. G.; Liu, N.; Shao, Z. L.; Li, H. Y.; Xiao, L.; Bian, J.; Li, J. H.; Tan, Z. F.; Zhu, M. H.; Duan, Y. Q. et al. Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. J. Mater. Chem. C 2019, 7, 14867–14873.

45

Jia S. Q.; Li, G. Y.; Liu, P.; Cai, R.; Tang, H. D.; Xu, B.; Wang, Z. J.; Wu, Z. H.; Wang, K.; Sun, X. W. Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing. Adv. Funct. Mater. 2020, 30, 1910817.

46

Liang S.; Zhang, M. Y.; Biesold, G. M.; Choi, W.; He, Y. J.; Li, Z. L.; Shen, D. F.; Lin, Z. Q. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv. Mater. 2021, 33, 2005888.

47

Hou, J.; Zhang, H. C.; Su, B.; Li, M. Z.; Yang, Q.; Jiang, L.; Song, Y. L. Four-dimensional screening anti-counterfeiting pattern by inkjet printed photonic crystals. Chem. Asian J. 2016, 11, 2680–2685.

48

Shanahan, M. E. R.; Carré, A. Anomalous spreading of liquid drops on an elastomeric surface. Langmuir 1994, 10, 1647–1649.

File
12274_2022_4466_MOESM1_ESM.pdf (926.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 March 2022
Revised: 16 April 2022
Accepted: 21 April 2022
Published: 31 May 2022
Issue date: August 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB2009303), the National Natural Science Foundation of China (Nos. 62105025 and 61935001), and Beijing Institute of Technology Research Fund Program for Young Scholars (No. 3040011182113). The authors would like to acknowledge the Experimental Center of Advanced Materials of Beijing Institute of Technology for the support in materials synthesis and characterization. We also acknowledge Prof. Ruibin Liu, Mr. Weifeng Ma, and Dr. Shuangyang Zou for the help in fluorescence spectra measurement.

Return