Journal Home > Volume 15 , Issue 9

Cluster catalysts are rapidly growing into an important sub-field in heterogeneous catalysis, owing to their distinct geometric structure, neighboring metal sites, and unique electronic structure. Although the thermodynamics and kinetics of the formation of nanoparticles have been largely investigated, the precise synthesis of clusters in wet chemical methods still faces great challenges. In the study, a quenching strategy of asymmetric temperature in solution for the rapid generation of vacancy-defect rich clusters is reported. The quenching process can be used to synthesize multitudinous metal compound clusters, including metal oxides, fluorides, oxygen-sulfur compounds, and tungstate. For oxygen evolution reaction (OER), IrO2 clusters with abundant oxygen vacancies were obtained and uniformly dispersed in the solution. Compared to commercial IrO2, the prepared IrO2 cluster can be directly loaded on carbon paper and used as binder-free electrodes, which exhibit higher OER activity and long-term operational stability in alkaline electrolytes. The quenching strategy provides a simple and efficient method for the synthesis of clusters, which has tremendous potential for industrial-scale preparation and application, especially can be further applied to flow electrochemical generators.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nucleation growth quenching for superior cluster catalysts

Show Author's information Ruyue Wang1,2,3,4Feng Cheng5Yonggang Wang2Dongyu Fan2Bohan Deng3Yuanzheng Long3Haolin Tang1( )Kai Huang2,3( )Zhaowei Qu2Ming Lei2Binghui Ge5( )Hui Wu3( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Beijing Key Laboratory of Space-ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

Abstract

Cluster catalysts are rapidly growing into an important sub-field in heterogeneous catalysis, owing to their distinct geometric structure, neighboring metal sites, and unique electronic structure. Although the thermodynamics and kinetics of the formation of nanoparticles have been largely investigated, the precise synthesis of clusters in wet chemical methods still faces great challenges. In the study, a quenching strategy of asymmetric temperature in solution for the rapid generation of vacancy-defect rich clusters is reported. The quenching process can be used to synthesize multitudinous metal compound clusters, including metal oxides, fluorides, oxygen-sulfur compounds, and tungstate. For oxygen evolution reaction (OER), IrO2 clusters with abundant oxygen vacancies were obtained and uniformly dispersed in the solution. Compared to commercial IrO2, the prepared IrO2 cluster can be directly loaded on carbon paper and used as binder-free electrodes, which exhibit higher OER activity and long-term operational stability in alkaline electrolytes. The quenching strategy provides a simple and efficient method for the synthesis of clusters, which has tremendous potential for industrial-scale preparation and application, especially can be further applied to flow electrochemical generators.

Keywords: oxygen evolution reaction, binder-free electrode, rapid-chilling, cluster structure, transition metal compounds

References(49)

1

Boudart, M. Heterogeneous catalysis by metals. J. Mol. Catal. 1985, 30, 27–38.

2

Gates, B. C. Supported metal clusters: Synthesis, structure, and catalysis. Chem. Rev. 1995, 95, 511–522.

3

Ye, R.; Zhukhovitskiy, A. V.; Deraedt, C. V.; Toste, F. D.; Somorjai, G. A. Supported dendrimer-encapsulated metal clusters: Toward heterogenizing homogeneous catalysts. Acc. Chem. Res. 2017, 50, 1894–1901.

4

Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816–824.

5

Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2010, 10, 11011–11045.

6

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

7

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

8

Mason, M. G. Electronic structure of supported small metal clusters. Phys. Rev. B 1983, 27, 748–762.

9

Kaden, W. E.; Wu, T. P.; Kunkel, W. A.; Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 2009, 326, 826–829.

10

Huang, K.; Xu, Y. Y.; Song, Y. P.; Wang, R. Y.; Wei, H. H.; Long, Y. Z.; Lei, M.; Tang, H. L.; Guo, J. G.; Wu, H. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance. J. Mater. Sci. Technol. 2021, 15, 1–6.

11

Van Deelen, T. W.; Mejía, C. H.; De Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

12

Weiner, R. G.; Kunz, M. R.; Skrabalak, S. E. Seeding a new kind of garden: Synthesis of architecturally defined multimetallic nanostructures by seed-mediated Co-reduction. Acc. Chem. Res. 2015, 48, 2688–2695.

13

Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

14

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

15

Zhuang, G. X.; Chen, Y. W.; Zhuang, Z. Y.; Yu, Y.; Yu, J. G. Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design. Sci. China Mater. 2020, 63, 2089–2118.

16

Shen, R. F.; Liu, Y. Y.; Wen, H.; Wu, X. L.; Han, G. S.; Yue, X. Z.; Mehdi, S.; Liu, T.; Cao, H. Q.; Liang, E. J. et al. Engineering bimodal oxygen vacancies and Pt to boost the activity toward water dissociation. Small 2022, 18, 2105588.

17

Maurer, F.; Jelic, J.; Wang, J. J.; Gänzler, A.; Dolcet, P.; Wöll, C.; Wang, Y. M.; Studt, F.; Casapu, M.; Grunwaldt, J. D. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 2020, 3, 824–833.

18

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2016, 7, 34–59.

19

Hülsey, M. J.; Zhang, J. G.; Yan, N. Harnessing the wisdom in colloidal chemistry to make stable single-atom catalysts. Adv. Mater. 2018, 30, 1802304.

20

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

21

Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

22

Wu, K. J.; Tse, E. C. M.; Shang, C. X.; Guo, Z. X. Nucleation and growth in solution synthesis of nanostructures-from fundamentals to advanced applications. Prog. Mater. Sci. 2022, 123, 100821.

23

Chen, D. T.; Zhang, L. H.; Du, J.; Wang, H. H.; Guo, J. Y.; Zhan, J. Y.; Li, F.; Yu, F. S. A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu-S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 24022–24027.

24

Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 2012, 7, 623–629.

25

Wei, H. H.; Huang, K; Zhang, L.; Ge, B. H.; Wang, D.; Lang, J. L.; Ma, J. Y.; Wang, D.; Zhang, S.; Li, Q. Y. et al. Ice melting to release reactants in solution syntheses. Angew. Chem., Int. Ed. 2018, 57, 3354–3359.

26

Huang, K.; Zhang, L.; Xu, T.; Wei, H. H.; Zhang, R. Y.; Zhang, X. Y.; Ge, B. H.; Lei, M.; Ma, J. Y.; Liu, L. M. et al. –60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nat. Commun 2019, 10, 606.

27

Zhang, C.; Shi, Y. M.; Yu, Y. F.; Du, Y. H.; Zhang, B. Engineering sulfur defects, atomic thickness, and porous structures into cobalt sulfide nanosheets for efficient electrocatalytic alkaline hydrogen evolution. ACS Catal. 2018, 8, 8077–8083.

28

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

29

Xu, M. L.; Li, D. D.; Sun, K.; Jiao, L.; Xie, C. F.; Ding, C. M.; Jiang, H. L. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 16372–16376.

30

Huang, X. Y.; Liu, Y. Y.; Wen, H.; Shen, R. F.; Mehdi, S.; Wu, X. L.; Liang, E. J.; Guo, X. J.; Li, B. J. Ensemble-boosting effect of Ru-Cu alloy on catalytic activity towards hydrogen evolution in ammonia borane hydrolysis. Appl. Catal. B: Environ. 2021, 287, 119960.

31

Huang, K.; Wang, R. Y.; Zhao, S. J.; Du, P.; Wang, H.; Wei, H. H.; Long, Y. Z.; Deng, B.; Lei, M.; Ge, B. H. et al. Atomic species derived CoOx clusters on nitrogen doped mesoporous carbon as advanced bifunctional electro-catalysts for Zn-air battery. Energy Storage Mater. 2020, 29, 156–162.

32

Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Song, S.; Kako, T.; Ye, J. H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS Catal. 2020, 10, 14318–14326.

33

To, T.; Sørensen, S. S.; Stepniewska, M.; Qiao, A.; Jensen, L. R.; Bauchy, M.; Yue, Y. Z.; Smedskjaer, M. M. Fracture toughness of a metal-organic framework glass. Nat. Commun. 2020, 11, 2593.

34

Liu, S. H.; Zhang, Y. T.; Mao, X. N.; Li, L.; Zhang, Y.; Li, L. G.; Pan, Y.; Li, X. G.; Wang, L.; Shao, Q. et al. Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy Environ. Sci. 2022, 15, 1672–1681.

35

Zhang, J. Y.; Jiang, Y. H.; Fan, Q. Y.; Qu, M.; He, N. N.; Deng, J. X.; Sun, Y.; Cheng, J.; Liao, H. G.; Sun, S. G. Atomic scale tracking of single layer oxide formation: Self-peeling and phase transition in solution. Small Method 2021, 5, 2001234.

36
Lide, D. R. Handbook of Chemistry and Physics; CRC Press: Boca Raton, 2004.
37

Xue, J. Y.; Ma, W. L.; Wang, L.; Cui, H. T. Surfactant-free large scale synthesis of Co3O4 quantum dots at room temperature. Adv. Powder Technol. 2016, 27, 2019–2024.

38

Zhang, X. X.; Sun, X.; Li, Y. L.; Hu, F. C.; Xu, Y.; Tian, J.; Zhang, H.; Liu, Q. H.; Su, H.; Wei, S. Q. Reduced interfacial tension on ultrathin NiCr-LDH nanosheet arrays for efficient electrocatalytic water oxidation. J. Mater. Chem. A 2021, 9, 16706–16712.

39

Zhao, R. R.; Zhang, J. L.; Lee, G. H.; Zhang, K.; Lau, V. W. H.; Lee, J. J.; Moudrakovski, I.; Yang, Y. L.; Zou, F.; Park, M. et al. The origin of heavy element doping to relieve the lattice thermal vibration of layered materials for high energy density Li ion cathodes. J. Mater. Chem. A 2020, 8, 12424–12435.

40

Li, L.; Wang, B.; Zhang, G. W.; Yang, G.; Yang, T.; Yang, S.; Yang, S. C. Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Adv. Energy Mater. 2020, 10, 2001600.

41

Kim, Y. T.; Lopes, P. P.; Park, S. A.; Lee, A. Y.; Lim, J.; Lee, H.; Back, S.; Jung, Y.; Danilovic, N.; Stamenkovic, V. et al. Balancing activity, stability and conductivity of nanoporous core–shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 2017, 8, 1449.

42

Weerakkody, C.; Biswas, S.; Song, W. Q.; He, J. K.; Wasalathanthri, N.; Dissanayake, S.; Kriz, D. A.; Dutta, B.; Suib, S. L. Controllable synthesis of mesoporous cobalt oxide for peroxide free catalytic epoxidation of alkenes under aerobic conditions. Appl. Catal. B: Environ. 2018, 221, 681–690.

43

Niu, H.; Yang, Q. H.; Wang, Q.; Jing, X. Y.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yang, J. Oxygen vacancies-enriched sub-7 nm cross-linked Bi288Fe5O12–x nanoparticles anchored MXene for electrochemical energy storage with high volumetric performances. Nano Energy 2020, 78, 105360.

44

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

45

Kraftmakher, Y. Equilibrium vacancies and thermophysical properties of metals. Phys. Rep. 1998, 299, 79–188.

46

Liu, T. T.; Yang, S. X.; Guan, J. Y.; Niu, J.; Zhang, Z. P.; Wang, F. Quenching as a route to defect-rich Ru-pyrochlore electrocatalysts toward the oxygen evolution reaction. Small Method 2022, 6, 2101156.

47

Ye, C. C.; Liu, J. Z.; Zhang, Q. H.; Jin, X. J.; Zhao, Y.; Pan, Z. H.; Chen, G. X.; Qiu, Y. C.; Ye, D. Q.; Gu, L. et al. Activating metal oxides nanocatalysts for electrocatalytic water oxidation by quenching-induced near-surface metal atom functionality. J. Am. Chem. Soc. 2021, 143, 14169–14177.

48

Ham, K.; Hong, S.; Kang, S. N. W. O.; Cho, K.; Lee, J. Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. 2021, 6, 364–370.

49

Choi, C.; Kwon, S.; Cheng, T.; Xu, M. J.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X. Q.; Duan, X. F. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812.

File
12274_2022_4465_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 March 2022
Revised: 12 April 2022
Accepted: 22 April 2022
Published: 30 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Nos. 51902027, 51788104, 61874014, 61874013, 61974011, and 61976025), the National Basic Research of China (Nos. 2016YFE0102200 and 2018YFB0104404), Beijing Natural Science Foundation (No. JQ19005), Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, China), BUPT Excellent Ph.D. Students Foundation (No. CX2020119), Guangdong Hydrogen Energy Institute of WHUT under Guangdong Key Areas Research and Development Program (No. 2019B090909003), Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515120042), and Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (No. XHD2020-002).

Return