Journal Home > Volume 15 , Issue 9

Hepatic carcinoma (HC) is the sixth most frequently occurring malignancies and the third leading cause of cancer death worldwide. Sepantronium bromide (YM155) is a small molecule inhibitor of survivin, which has broad-spectrum anticancer therapeutic effects in various xenograft models. However, several-day continuous infusion is required to achieve greater anti-tumor efficacy because of rapid elimination from the blood circulation. Herein, a SMMC-7721 cancerous cyto-membrane-cloaked drug delivery system (DDS) (named as iM7721@GQD-YM), was developed for co-encapsulation of YM155 and graphene quantum dots (GQDs). Cytomembrane coating endowed iM7721@GQD-YM with effective targeting for homologous HC cells, excellent biocompatibility and favorable immunocompatibility for in vivo application. Surface decoration of iRGD peptide further enhanced its tumor targeting activity by iRGD-integrin recognition. In addition, under the irradiation of near-infrared ray (NIR), GQDs can directly kill tumors through photothermal effect and cause cell membrane rupture, accurately releasing YM155 at tumor sites. The physicochemical properties, in vivo andex vivo anti-tumor efficacy, and mechanisms of iM7721@GQD-YM nanoparticles (NPs) were systematically investigated in this work. The experimental results clearly indicate that the versatile biomimetic DDS holds great potential for the treatment of HC, which merits further investigation in both pre-clinical and clinical studies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synergistic anti-tumor therapy by a homotypic cell membrane-cloaked biomimetic nanocarrier with exceptionally potent activity against hepatic carcinoma

Show Author's information Shini Feng1,§Pinyue Ni1,§Yan Gong1Bijiang Geng2Hui Li1Chenlin Miao1Ruyu Fan1Levon Galstyan1,3Dengyu Pan2Fuxue Chen1( )Huafei Li1( )
School of Lifesciences, Shanghai University, Shanghai 200444, China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
SLAVMED Medical Center, Manandyan st., 9 bld., Yerevan 0037, Republic of Armenia

§ Shini Feng and Pinyue Ni contributed equally to this work.

Abstract

Hepatic carcinoma (HC) is the sixth most frequently occurring malignancies and the third leading cause of cancer death worldwide. Sepantronium bromide (YM155) is a small molecule inhibitor of survivin, which has broad-spectrum anticancer therapeutic effects in various xenograft models. However, several-day continuous infusion is required to achieve greater anti-tumor efficacy because of rapid elimination from the blood circulation. Herein, a SMMC-7721 cancerous cyto-membrane-cloaked drug delivery system (DDS) (named as iM7721@GQD-YM), was developed for co-encapsulation of YM155 and graphene quantum dots (GQDs). Cytomembrane coating endowed iM7721@GQD-YM with effective targeting for homologous HC cells, excellent biocompatibility and favorable immunocompatibility for in vivo application. Surface decoration of iRGD peptide further enhanced its tumor targeting activity by iRGD-integrin recognition. In addition, under the irradiation of near-infrared ray (NIR), GQDs can directly kill tumors through photothermal effect and cause cell membrane rupture, accurately releasing YM155 at tumor sites. The physicochemical properties, in vivo andex vivo anti-tumor efficacy, and mechanisms of iM7721@GQD-YM nanoparticles (NPs) were systematically investigated in this work. The experimental results clearly indicate that the versatile biomimetic DDS holds great potential for the treatment of HC, which merits further investigation in both pre-clinical and clinical studies.

Keywords: graphene quantum dots, photothermal effect, hepatic carcinoma, sepantronium bromide (YM155), cancer cell membrane, biomimetic drug delivery system

References(53)

1

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

2
Epidemiology of hepatocellular carcinoma Hepatology 2021 73 Suppl 1 4 13 10.1002/hep.31288

McGlynn, K. A.; Petrick, J. L.; El-Serag, H. B. Epidemiology of hepatocellular carcinoma. Hepatology 2021, 73 Suppl 1, 4–13.

3

Anwanwan, D.; Singh, S. K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188314.

4

Lee, Y. T.; Wang, J. J.; Luu, M.; Noureddin, M.; Kosari, K.; Agopian, V. G.; Rich, N. E.; Lu, S. C.; Tseng, H. R.; Nissen, N. N. et al. The mortality and overall survival trends of primary liver cancer in the United States. J. Natl. Cancer Inst. 2021, 113, 1531–1541.

5

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33.

6

Martínez-García, D.; Manero-Rupérez, N.; Quesada, R.; Korrodi-Gregório, L.; Soto-Cerrato, V. Therapeutic strategies involving survivin inhibition in cancer. Med. Res. Rev. 2019, 39, 887–909.

7

Jiang, X. Y.; Wilford, C.; Duensing, S.; Munger, K.; Jones, G.; Jones, D. Participation of survivin in mitotic and apoptotic activities of normal and tumor-derived cells. J. Cell. Biochem. 2001, 83, 342–354.

8

Min, L. H.; Ji, Y.; Bakiri, L.; Qiu, Z. X.; Cen, J.; Chen, X. T.; Chen, L. L.; Scheuch, H.; Zheng, H.; Qin, L. X. et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat. Cell Biol. 2012, 14, 1203–1211.

9

Su, C. Q. Survivin in survival of hepatocellular carcinoma. Cancer Lett. 2016, 379, 184–190.

10

Santarelli, A.; Mascitti, M.; Lo Russo, L.; Sartini, D.; Troiano, G.; Emanuelli, M.; Lo, M. L. Survivin-based treatment strategies for squamous cell carcinoma. Int. J. Mol. Sci. 2018, 19, 971.

11

Sumi, T.; Hirai, S.; Yamaguchi, M.; Tanaka, Y.; Tada, M.; Yamada, G.; Hasegawa, T.; Miyagi, Y.; Niki, T.; Watanabe, A. et al. Survivin knockdown induces senescence in TTF-1-expressing, KRAS-mutant lung adenocarcinomas. Int. J. Oncol. 2018, 53, 33–46.

12

Gundamaraju, R.; Vemuri, R.; Chong, W. C.; Myers, S.; Norouzi, S.; Shastri, M. D.; Eri, R. Interplay between endoplasmic reticular stress and survivin in colonic epithelial cells. Cells 2018, 7, 171.

13

Nyquist, M. D.; Corella, A.; Burns, J.; Coleman, I.; Gao, S.; Tharakan, R.; Riggan, L.; Cai, C. M.; Corey, E.; Nelson, P. S. et al. Exploiting AR-regulated drug transport to induce sensitivity to the survivin inhibitor YM155. Mol. Cancer Res. 2017, 15, 521–531.

14

Nakahara, T.; Kita, A.; Yamanaka, K.; Mori, M.; Amino, N.; Takeuchi, M.; Tominaga, F.; Kinoyama, I.; Matsuhisa, A.; Kudou, M. et al. Broad spectrum and potent antitumor activities of YM155, a novel small-molecule Survivin suppressant, in a wide variety of human cancer cell lines and xenograft models. Cancer Sci. 2011, 102, 614–621.

15
YM155,  a  novel  small-molecule  survivinsuppressant,  induces  regression  of  established  human  hormone-refractory  prostate  tumor  xenografts Cancer Res. 2007 67 8014 8021 10.1158/0008-5472.CAN-07-1343

Nakahara, T.; Takeuchi, M.; Kinoyama, I.; Minematsu, T.; Shirasuna, K.; Matsuhisa, A.; Kita, A.; Tominaga, F.; Yamanaka, K.; Kudoh, M. et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone- refractory prostate tumor xenografts. Cancer Res. 2007, 67, 8014–8021.

16

Wang, C. L.; Zhang, W.; He, Y. J.; Gao, Z. R.; Liu, L. Y.; Yu, S. Y.; Hu, Y. X.; Wang, S.; Zhao, C. C.; Li, H. et al. Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects. Nat. Nanotechnol. 2021, 16, 1413–1423.

17

Bao, W. E.; Liu, M.; Meng, J. Q.; Liu, S. Y.; Wang, S.; Jia, R. R.; Wang, Y. G.; Ma, G. H.; Wei, W.; Tian, Z. Y. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat. Commun. 2021, 12, 6399.

18

Feng, S. N.; Ren, Y. J.; Li, H.; Tang, Y. F.; Yan, J. Y.; Shen, Z. Y.; Zhang, H. J.; Chen, F. X. Cancer cell-membrane biomimetic boron nitride nanospheres for targeted cancer therapy. Int. J. Nanomedicine 2021, 16, 2123–2136.

19

Wang, C.; Jiang, Y.; Ma, J. M.; Wu, H. X.; Wacker, D.; Katritch, V.; Han, G. W.; Liu, W.; Huang, X. P.; Vardy, E. et al. Structural basis for molecular recognition at serotonin receptors. Science 2013, 340, 610–614.

20

Li, H. F.; Jin, H.; Wan, W.; Wu, C.; Wei, L. X. Cancer nanomedicine: Mechanisms, obstacles and strategies. Nanomedicine (Lond) 2018, 13, 1639–1656.

21

Yang, Y. Y.; Yu, Y. J.; Chen, H.; Meng, X. X.; Ma, W.; Yu, M.; Li, Z. Y.; Li, C. H.; Liu, H. L.; Zhang, X. D. et al. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging. ACS Nano 2020, 14, 13536–13547.

22

Zhong, W. H.; Zhang, X. Y.; Zeng, Y. X.; Lin, D. J.; Wu, J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res. 2021, 14, 2067–2089.

23

Sun, H. P.; Su, J. H.; Meng, Q. S.; Yin, Q.; Chen, L. L.; Gu, W. W.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Wang, S. L. et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 2016, 28, 9581–9588.

24

Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

25

Gong, H.; Zhang, Q. Z.; Komarla, A.; Wang, S. Y.; Duan, Y. O.; Zhou, Z. D.; Chen, F.; Fang, R. H.; Xu, S.; Gao, W. W. et al. Nanomaterial biointerfacing via mitochondrial membrane coating for targeted detoxification and molecular detection. Nano Lett. 2021, 21, 2603–2609.

26

Fan, Z. Y.; Li, P. Y.; Deng, J. J.; Bady, S. C.; Cheng, H. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res. 2018, 11, 5573–5583.

27

Zhu, J. Y.; Zheng, D. W.; Zhang, M. K.; Yu, W. Y.; Qiu, W. X.; Hu, J. J.; Feng, J.; Zhang, X. Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016, 16, 5895–5901.

28

Chai, Z. L.; Ran, D. N.; Lu, L. W.; Zhan, C. Y.; Ruan, H. T.; Hu, X. F.; Xie, C.; Jiang, K.; Li, J. Y.; Zhou, J. F. et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano 2019, 13, 5591–5601.

29

Liu, W.; Ruan, M. L.; Wang, Y. M.; Song, R. G.; Ji, X.; Xu, J. K.; Dai, J.; Xue, W. Light-triggered biomimetic nanoerythrocyte for tumor-targeted lung metastatic combination therapy of malignant melanoma. Small 2018, 14, e1801754.

30

Liu, X. J.; Sun, Y. X.; Xu, S. S.; Gao, X. N.; Kong, F. P.; Xu, K. H.; Tang, B. Homotypic cell membrane-cloaked biomimetic nanocarrier for the targeted chemotherapy of hepatocellular carcinoma. Theranostics 2019, 9, 5828–5838.

31

Luo, Z. Q.; Weiss, D. E.; Liu, Q. Y.; Tian, B. Z. Biomimetic approaches toward smart bio-hybrid systems. Nano Res. 2018, 11, 3009–3030.

32

Gao, J. B.; Wang, F.; Wang, S. H.; Liu, L.; Liu, K.; Ye, Y. C.; Wang, Z.; Wang, H.; Chen, B.; Jiang, J. M. et al. Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy. Adv. Sci. (Weinh.) 2020, 7, 1903642.

33

Obaid, G.; Samkoe, K.; Tichauer, K.; Bano, S.; Park, Y.; Silber, Z.; Hodge, S.; Callaghan, S.; Guirguis, M.; Mallidi, S. et al. Is tumor cell specificity distinct from tumor selectivity in vivo?: A quantitative NIR molecular imaging analysis of nanoliposome targeting. Nano Res. 2021, 14, 1344–1354.

34

Geng, B. J.; Shen, W. W.; Fang, F. L.; Qin, H.; Li, P.; Wang, X. L.; Li, X. K.; Pan, D. Y.; Shen, L. X. Enriched graphitic N dopants of carbon dots as F cores mediate photothermal conversion in the NIR-II window with high efficiency. Carbon 2020, 162, 220–233.

35

Ren, Y. J.; Miao, C. L.; Tang, L.; Liu, Y. X.; Ni, P. Y.; Gong, Y.; Li, H.; Chen, F. X.; Feng, S. N. Homotypic cancer cell membranes camouflaged nanoparticles for targeting drug delivery and enhanced chemo-photothermal therapy of glioma. Pharmaceuticals (Basel) 2022, 15, 157.

36

Li, H. F.; Wu, C.; Xia, M.; Zhao, H.; Zhao, M. X.; Hou, J.; Li, R.; Wei, L. X.; Zhang, L. Targeted and controlled drug delivery using a temperature and ultra-violet responsive liposome with excellent breast cancer suppressing ability. RSC Adv. 2015, 5, 27630–27639.

37

Bhagat, M.; Sofou, S. Membrane heterogeneities and fusogenicity in phosphatidylcholine-phosphatidic acid rigid vesicles as a function of pH and lipid chain mismatch. Langmuir 2010, 26, 1666–1673.

38

Kanehisa, M. I.; Tsong, T. Y. Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers. J. Am. Chem. Soc. 1978, 100, 424–432.

39

Sung, S. Y.; Su, Y. L.; Cheng, W.; Hu, P. F.; Chiang, C. S.; Chen, W. T.; Hu, S. H. Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges. Nano Lett. 2019, 19, 69–81.

40

Zhang, L. J.; Zhang, X.; Lu, G. H.; Li, F.; Bao, W. E.; Song, C.; Wei, W.; Ma, G. H. Cell membrane camouflaged hydrophobic drug nanoflake sandwiched with photosensitizer for orchestration of chemo-photothermal combination therapy. Small 2019, 15, e1805544.

41

Chen, G.; Yang, Y. Y.; Xu, Q.; Ling, M. J.; Lin, H. M.; Ma, W.; Sun, R.; Xu, Y. C.; Liu, X. Q.; Li, N. et al. Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy. Nano Lett. 2020, 20, 8141–8150.

42

Hao, H. S.; Chen, Y.; Wu, M. Y. Biomimetic nanomedicine toward personalized disease theranostics. Nano Res. 2021, 8, 2491–2511.

43

Jiang, Y.; Krishnan, N.; Zhou, J. R.; Chekuri, S.; Wei, X. L.; Kroll, A. V.; Yu, C. L.; Duan, Y. O.; Gao, W. W.; Fang, R. H. et al. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv. Mater. 2020, 32, e2001808.

44

Liu, M. T.; Ma, W. J.; Zhao, D.; Li, J. J.; Li, Q. R.; Liu, Y. H.; Hao, L. Y.; Lin, Y. F. Enhanced penetrability of a tetrahedral framework nucleic acid by modification with iRGD for DOX-targeted delivery to triple-negative breast cancer. ACS Appl. Mater. Interfaces 2021, 13, 25825–25835.

45

Gholizadeh, S.; Dolman, E. M.; Wieriks, R.; Sparidans, R. W.; Hennink, W. E.; Kok, R. J. Anti-GD2 immunoliposomes for targeted delivery of the survivin inhibitor sepantronium bromide (YM155) to neuroblastoma tumor cells. Pharm. Res. 2018, 35, 85.

46

Schmitt, E.; Gehrmann, M.; Brunet, M.; Multhoff, G.; Garrido, C. Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. J. Leukoc. Biol. 2007, 81, 15–27.

47

Duan, X. P.; Chan, C.; Lin, W. B. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 670–680.

48

Gupta, G.; Borglum, K.; Chen, H. X. Immunogenic cell death: A step ahead of autophagy in cancer therapy. J. Cancer Immunol. (Wilmington) 2021, 3, 47–59.

49

Evans, S. S.; Repasky, E. A.; Fisher, D. T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 2015, 15, 335–349.

50

Geng, B. J.; Shen, W. W.; Li, P.; Fang, F. L.; Qin, H.; Li, X. K.; Pan, D. Y.; Shen, L. X. Carbon dot-passivated black phosphorus nanosheet hybrids for synergistic cancer therapy in the NIR-II window. ACS Appl. Mater. Interfaces 2019, 11, 44949–44960.

51

Chen, H. L.; Zheng, D. H.; Pan, W. Z.; Li, X.; Lv, B.; Gu, W. X.; Machuki, J. O.; Chen, J. H.; Liang, W. Q.; Qin, K. et al. Biomimetic nanotheranostics camouflaged with cancer cell membranes integrating persistent oxygen supply and homotypic targeting for hypoxic tumor elimination. ACS Appl. Mater. Interfaces 2021, 13, 19710–19725.

52

Gao, W. W.; Hu, C. M. J.; Fang, R. H.; Luk, B. T.; Su, J.; Zhang, L. F. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. 2013, 25, 3549–3553.

53

Dolman, M. E. M.; den Hartog, I. J. M.; Molenaar, J. J.; Schellens, J. H. M.; Beijnen, J. H.; Sparidans, R. W. Liquid chromatography-tandem mass spectrometric assay for the light sensitive Survivin suppressant sepantronium bromide (YM155) in mouse plasma. J. Pharm. Biomed. Anal. 2014, 92, 144–148.

File
12274_2022_4462_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 March 2022
Revised: 17 April 2022
Accepted: 21 April 2022
Published: 01 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was sponsored by “One Belt One Road” International Cooperation Project of Shanghai Municipal Committee of Science and Technology (No. 19410740900), the National Natural Science Foundation of China (No. 52002239), the International Science and Technology Cooperation Programme of Ministry of Science and Technology of China (No. 2019YFE0116800), and Natural Science Foundation of Shanghai (No. 21ZR1422800).

Return