Journal Home > Volume 15 , Issue 9

The advancement of lithium-sulfur (Li-S) batteries is severely retarded by lithium polysulfides (LiPSs) shuttling behavior and sluggish redox kinetics. Herein, the heterogeneous composite with defective Bi2Se3−x nanosheets and porous nitrogen-doped carbon (Bi2Se3−x/NC) is prepared by selenizing bismuth metal-organic frameworks as a multifunctional sulfur host. The highly efficient immobilization-conversion on LiPSs is realized by the synergistic effect of structure construction strategy and defect engineering. It is found that Bi2Se3−x with the suitable amount of selenium vacancies achieves the best electrochemical performance due to the advantages of its structure and composition. These results confirm the intrinsic correlation between defects and catalysis, which are revealed by computational and experimental studies. Due to these superiorities, the developed sulfur electrodes exhibited admirable stability and a fairly lower capacity decay rate of approximately 0.0278% per cycle over 1,000 cycles at a 3 C rate. Even at the high sulfur loading of 6.2 mg·cm−2, the cathode still demonstrates a high discharge capacity of 455 mAh·g−1 at 1 C. This work may enlighten the development of mechanism investigation and design principles regarding sulfur catalysis toward high-performance Li-S batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quantitative defect regulation of heterostructures for sulfur catalysis toward fast and long lifespan lithium-sulfur batteries

Show Author's information Saisai Qiu1,§Xinqi Liang1,§Shuwen Niu2Qingguo Chen1Gongming Wang2( )Minghua Chen1( )
Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China

§ Saisai Qiu and Xinqi Liang contributed equally to this work.

Abstract

The advancement of lithium-sulfur (Li-S) batteries is severely retarded by lithium polysulfides (LiPSs) shuttling behavior and sluggish redox kinetics. Herein, the heterogeneous composite with defective Bi2Se3−x nanosheets and porous nitrogen-doped carbon (Bi2Se3−x/NC) is prepared by selenizing bismuth metal-organic frameworks as a multifunctional sulfur host. The highly efficient immobilization-conversion on LiPSs is realized by the synergistic effect of structure construction strategy and defect engineering. It is found that Bi2Se3−x with the suitable amount of selenium vacancies achieves the best electrochemical performance due to the advantages of its structure and composition. These results confirm the intrinsic correlation between defects and catalysis, which are revealed by computational and experimental studies. Due to these superiorities, the developed sulfur electrodes exhibited admirable stability and a fairly lower capacity decay rate of approximately 0.0278% per cycle over 1,000 cycles at a 3 C rate. Even at the high sulfur loading of 6.2 mg·cm−2, the cathode still demonstrates a high discharge capacity of 455 mAh·g−1 at 1 C. This work may enlighten the development of mechanism investigation and design principles regarding sulfur catalysis toward high-performance Li-S batteries.

Keywords: shuttle effect, lithium polysulfides (LiPSs), lithium-sulfur (Li-S) batteries, redox kinetics, selenium vacancy, sulfur catalysis

References(38)

1

Sun, F.; Osenberg, M.; Dong, K.; Zhou, D.; Hilger, A.; Jafta, C. J.; Risse, S.; Lu, Y.; Markötter, H.; Manke, I. Correlating morphological evolution of Li electrodes with degrading electrochemical performance of Li/LiCoO2 and Li/S battery systems: Investigated by synchrotron X-ray phase contrast tomography. ACS Energy Lett. 2018, 3, 356–365.

2

Chen, M. H.; Fan, H.; Zhang, Y.; Liang, X. Q.; Chen, Q. G.; Xia, X. H. Coupling PEDOT on mesoporous vanadium nitride arrays for advanced flexible all-solid-state supercapacitors. Small 2020, 16, 2003434.

3

Liang, X. Q.; Chen, M. H.; Zhu, H. K.; Zhu, H.; Cui, X. H.; Yan, J. X.; Chen, Q. G.; Xia, X. H.; Liu, Q. Unveiling the solid-solution charge storage mechanism in 1T vanadium disulfide nanoarray cathodes. J. Mater. Chem. A 2020, 8, 9068–9076.

4

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

5

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2011, 11, 19–29.

6

Hwang, J. Y.; Shin, S.; Yoon, C. S.; Sun, Y. K. Nano-compacted Li2S/graphene composite cathode for high-energy lithium-sulfur batteries. ACS Energy Lett. 2019, 4, 2787–2795.

7

He, J. R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Stor. Mater. 2019, 20, 55–70.

8

Lim, W. G.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757.

9

Kang, H. S.; Park, E.; Hwang, J. Y.; Kim, H.; Aurbach, D.; Rosenman, A.; Sun, Y. K. Li-S batteries: A scaled-up lithium (ion)-sulfur battery: Newly faced problems and solutions. Adv. Mater. Technol. 2016, 1, 1600052.

10

Jiang, Y.; Liu, H. Q.; Tan, X. H.; Guo, L. M.; Zhang, J. T.; Liu, S. N.; Guo, Y. J.; Zhang, J.; Wang, H. F.; Chu, W. G. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 25239–25249.

11

Salhabi, E. H. M.; Zhao, J. L.; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2−x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2019, 58, 9078–9082.

12

Li, Z. Q.; Yin, L. W. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. ACS Appl. Mater. Interfaces 2015, 7, 4029–4038.

13

Jin, Z. S.; Zhao, M.; Lin, T. N.; Liu, B. Q.; Zhang, Q.; Zhang, L. Y.; Chen, L. H.; Li, L.; Su, Z. M.; Wang, C. G. Rational design of well-dispersed ultrafine CoS2 nanocrystals in micro-mesoporous carbon spheres with a synergistic effect for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 10885–10890.

14

Chen, M. H.; Li, T. Y.; Li, Y.; Liang, X. Q.; Sun, W. F.; Chen, Q. G. Rational design of a MnO nanoparticle-embedded carbon nanofiber interlayer for advanced lithium-sulfur batteries. ACS Appl. Energy Mater. 2020, 3, 10793–10801.

15

Lei, T. Y.; Chen, W.; Huang, J. W.; Yan, C. Y.; Sun, H. X.; Wang, C.; Zhang, W. L.; Li, Y. R.; Xiong, J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1601843.

16

Qiu, S. S.; Liang, X. Q.; Li, Y.; Xia, X. H.; Chen, M. H. Recent advance on Co-based materials for polysulfide catalysis toward promoted lithium-sulfur batteries. Nano Select 2022, 3, 298–319.

17

Li, X. X.; Gao, B.; Huang, X.; Guo, Z. J.; Li, Q. W.; Zhang, X. M.; Chu, P. K.; Huo, K. F. Conductive mesoporous niobium nitride microspheres/nitrogen-doped graphene hybrid with efficient polysulfide anchoring and catalytic conversion for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 2961–2969.

18

Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C.; et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.

19

Wang, M. X.; Fan, L. S.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K. N.; Qiu, Y.; Yin, X. J.; et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 2020, 5, 3041–3050.

20

Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927.

21

Yuan, H.; Peng, H. J.; Li, B. Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J. Q.; Zhang, Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.

22

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

23

Shi, H. F.; Lv, W.; Zhang, C.; Wang, D. W.; Ling, G. W.; He, Y. B.; Kang, F. Y.; Yang, Q. H. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 2018, 28, 1800508.

24

Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.

25

Li, Z. C.; Pan, H. L.; Wei, W. X.; Dong, A. L.; Zhang, K. L.; Lv, H. Y.; He, X. H. Bismuth metal-organic frameworks derived bismuth selenide nanosheets/nitrogen-doped carbon hybrids as anodes for Li-ion batteries with improved cyclic performance. Ceram. Int. 2019, 45, 11861–11867.

26

Zheng, H. B.; Zeng, Y. X.; Zhang, H. Z.; Zhao, X. Y.; Chen, M. H.; Liu, J.; Lu, X. H. Oxygen vacancy activated Bi2O3 nanoflowers as a high-performance anode for rechargeable alkaline battery. J. Power Sources 2019, 433, 126684.

27

Liu, Y. W.; Xiao, C.; Li, Z.; Xie, Y. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 2016, 6, 1600436.

28

Zhang, Y. G.; Li, G. R.; Wang, J. Y.; Cui, G. L.; Wei, X. L.; Shui, L. L.; Kempa, K.; Zhou, G. F.; Wang, X.; Chen, Z. W. Hierarchical defective Fe3−xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2001165.

29

Wang, J. Y.; Zhao, Y.; Li, G. R.; Luo, D.; Liu, J. B.; Zhang, Y. G.; Wang, X.; Shui, L. L.; Chen, Z. W. Aligned sulfur-deficient ZnS1−x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. Nano Energy 2021, 84, 105891.

30

Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.

31

Hao, G. P.; Tang, C.; Zhang, E.; Zhai, P. Y.; Yin, J.; Zhu, W. C.; Zhang, Q.; Kaskel, S. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries. Adv. Mater. 2017, 29, 1702829.

32

Sun, D.; Zhou, J. B.; Rao, D. W.; Zhu, L. Q.; Niu, S. W.; Cai, J. Y.; Fang, Y. Y.; Liu, Y.; Liu, X. M.; Zang, Y. P. et al. Regulating the electron filling state of d orbitals in Ta-based compounds for tunable lithium-sulfur chemistry. Sustain. Mater. Technol. 2021, 28, e00271.

33

Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

34

Jin, Z. S.; Lin, T. N.; Jia, H. F.; Liu, B. Q.; Zhang, Q.; Li, L.; Zhang, L. Y.; Su, Z. M.; Wang, C. G. Expediting the conversion of Li2S2 to Li2S enables high-performance Li-S batteries. ACS Nano 2021, 15, 7318–7327.

35

Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Yan, Y. C.; He, W. D.; Xiong, J. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

36

Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.

37

Jin, Z. S. ; Lin, T. N. ; Jia, H. F. ; Liu, B. Q. ; Zhang, Q. ; Chen, L. H. ; Zhang, L. Y. ; Li, L. ; Su, Z. M. ; Wang, C. G. In situ engineered ultrafine NiS2-ZnS heterostructures in micro-mesoporous carbon spheres accelerating polysulfide redox kinetics for high-performance lithium-sulfur batteries. Nanoscale 2020, 12, 16201–16207.

38

Jin, Z. S.; Liang, Z. M.; Zhao, M.; Zhang, Q.; Liu, B. Q.; Zhang, Q. Y.; Chen, L. H.; Li, L.; Wang, C. G. Rational design of MoNi sulfide yolk–shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 394, 124983.

File
12274_2022_4453_MOESM1_ESM.pdf (749.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2022
Revised: 28 March 2022
Accepted: 20 April 2022
Published: 08 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52122702), the Natural Science Foundation of Heilongjiang Province of China (No. JQ2021E005), and the Fundamental Research Foundation for Universities of Heilongjiang Province (No. LGYC2018JQ006).

Return