Journal Home > Volume 15 , Issue 9

Hydrogen release through water splitting is essential for reducing carbon emissions and promoting the hydrogen economy. One of the crucial challenges for industrial applications of water electrolysis is the manufacture of electrocatalysts which can reduce the kinetic energy barrier of the hydrogen evolution reaction (HER). Loading transition metal (TM) nanoparticles (NPs) or single atoms (SAs) into heteroatom-doped carbon materials (HCMs) is an effective method to improve electrochemical activity and stability. To this end, we synthesized N-doped porous carbon (NC) encapsulated Co NPs and isolated Co SA nanocatalysts (denoted as Co NPs@SAs-NC) using metal-organic frameworks (MOFs) as sacrificial precursors. The Co NPs@SAs-NC nanocatalysts displayed outstanding HER activity with a 110 mV overpotential in 1 M KOH, 47 mV overpotential in 0.5 M H2SO4 and 171 mV in 0.5 M phosphate-buffered saline (PBS) to reach a current density of 10 mA·cm−2. In addition, the mechanism of the synergistic effect of Co NPs, Co SAs and N species was investigated in-depth using in situ shielding experiments and density functional theory (DFT) calculations.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction

Show Author's information Rui jiang1,§Qian Li1,§Xue Zheng1Weizhe Wang1Shuangbao Wang1Zhimou Xu1( )Jiabin Wu2( )
School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Rui jiang and Qian Li contributed equally to this work.

Abstract

Hydrogen release through water splitting is essential for reducing carbon emissions and promoting the hydrogen economy. One of the crucial challenges for industrial applications of water electrolysis is the manufacture of electrocatalysts which can reduce the kinetic energy barrier of the hydrogen evolution reaction (HER). Loading transition metal (TM) nanoparticles (NPs) or single atoms (SAs) into heteroatom-doped carbon materials (HCMs) is an effective method to improve electrochemical activity and stability. To this end, we synthesized N-doped porous carbon (NC) encapsulated Co NPs and isolated Co SA nanocatalysts (denoted as Co NPs@SAs-NC) using metal-organic frameworks (MOFs) as sacrificial precursors. The Co NPs@SAs-NC nanocatalysts displayed outstanding HER activity with a 110 mV overpotential in 1 M KOH, 47 mV overpotential in 0.5 M H2SO4 and 171 mV in 0.5 M phosphate-buffered saline (PBS) to reach a current density of 10 mA·cm−2. In addition, the mechanism of the synergistic effect of Co NPs, Co SAs and N species was investigated in-depth using in situ shielding experiments and density functional theory (DFT) calculations.

Keywords: metal-organic frameworks, hydrogen evolution reaction, nanocatalysts, single atoms, pH universal

References(55)

1

1] Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

Chornet, E.; Czernik, S. Harnessing hydrogen. Nature 2002, 418, 928–929.

3

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

4

Davoodabadi, A.; Mahmoudi, A.; Ghasemi, H. The potential of hydrogen hydrate as a future hydrogen storage medium. iScience 2021, 24, 101907.

5

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

6

Yukesh Kannah, R.; Kavitha, S.; Preethi; Parthiba Karthikeyan, O.; Kumar, G.; Dai-Viet, N. V.; Rajesh Banu, J. Techno-economic assessment of various hydrogen production methods—A review. Bioresour. Technol. 2021, 319, 124175.

7

Wang, S.; Lu, A. L.; Zhong, C. J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4.

8

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

9

Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

10

Fang, S.; Zhu, X. R.; Liu, X. K.; Gu, J.; Liu, W.; Wang, D. H.; Zhang, W.; Lin, Y.; Lu, J. L.; Wei, S. Q. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 2020, 11, 1029.

11

Liang, L. H.; Jin, H. H.; Zhou, H.; Liu, B. S.; Hu, C. X.; Chen, D.; Wang, Z.; Hu, Z. Y.; Zhao, Y. F.; Li, H. W. et al. Cobalt single atom site isolated pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 2021, 88, 106221.

12

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

13

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

14

Zhong, H. X.; Wang, J.; Zhang, Q.; Meng, F. L.; Bao, D.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Yan, J. M.; Zhang, X. B. In situ coupling FeM (M = Ni, Co) with nitrogen-doped porous carbon toward highly efficient trifunctional electrocatalyst for overall water splitting and rechargeable Zn-air battery. Adv. Sustain. Syst. 2017, 1, 1700020.

15

Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res. 2018, 11, 1664–1675.

16

Pang, L. W.; Liu, W.; Zhao, X. R.; Zhou, M.; Qin, J. Y.; Yang, J. Engineering electronic structures of nickel cobalt phosphide via iron doping for efficient overall water splitting. Chemelectrochem 2020, 7, 4913–4921.

17

Wu, J. B.; Xiong, L. K.; Zhao, B. T.; Liu, M. L.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4, 1900540.

18

Cheng, H.; Liu, Q.; Diao, Y. W.; Wei, L. L.; Chen, J. H.; Wang, F. X. CoMo2S4 with superior conductivity for electrocatalytic hydrogen evolution: Elucidating the key role of Co. Adv. Funct. Mater. 2021, 31, 2103732.

19

Zheng, J. G.; Xu, A. N.; Wu, A. J.; Li, X. D. Plasma-engraved Co2N nanostructures toward high-performance alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 21231–21240.

20

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

21

Tahir, M.; Mahmood, N.; Zhang, X. X.; Mahmood, T.; Butt, F. K.; Aslam, I.; Tanveer, M.; Idrees, F.; Khalid, S.; Shakir, I. et al. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015, 8, 3725–3736.

22

Wang, J.; Kong, H.; Zhang, J. Y.; Hao, Y.; Shao, Z. P.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717.

23

Huang, L.; Zhang, X. P.; Han, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J. In situ synthesis of ultrathin metal-organic framework nanosheets:A new method for 2d metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A 2017, 5, 18610–18617.

24

Liu, Y. Y.; Han, G. S.; Zhang, X. Y.; Xing, C. C.; Du, C. X.; Cao, H. Q.; Li, B. J. Co-Co3O4@carbon core–shells derived from meta-organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Res. 2017, 10, 3035–3048.

25

Jiang, R.; Wang, W. Z.; Zheng, X.; Li, Q.; Xu, Z. M.; Peng, J. Hierarchically porous CoP@CNR nanorod derived from metal-organic frameworks as noble-metal-free catalyst for dehydrogenization of ammonia-borane. Int. J. Hydrogen Energy 2021, 46, 5345–5354.

26

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

27

Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

28

Sun, T. T.; Zhang, P. P.; Chen, W. X.; Wang, K.; Fu, X. Z.; Zheng, T. Y.; Jiang, J. Z. Single iron atoms coordinated to g-C3N4 on hierarchical porous n-doped carbon polyhedra as a high-performance electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2020, 56, 798–801.

29

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

30

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. , Int. Ed. 2022, 61, e202115219.

31

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

32

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

33

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. P-d orbital hybridization induced by a monodispersed ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

34

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

35

Chen, Z. L.; Qing, H. L.; Zhou, K.; Sun, D. L.; Wu, R. B. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 2020, 108, 100618.

36

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

37

Wang, W. Z.; Dai, Z. W.; Jiang, R.; Li, Q.; Zheng, X.; Liu, W.; Luo, Z. G.; Xu, Z. M.; Peng, J. Highly phosphatized magnetic catalyst with electron transfer induced by quaternary synergy for efficient dehydrogenation of ammonia borane. ACS Appl. Mater. Interfaces 2020, 12, 43854–43863.

38

Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of mof-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887–5903.

39

Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

40

Feng, L.; Wang, K. Y.; Day, G. S.; Ryder, M. R.; Zhou, H. C. Destruction of metal-organic frameworks: Positive and negative aspects of stability and lability. Chem. Rev. 2020, 120, 13087–13133.

41

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

42

Sun, H.; Lian, Y. B.; Yang, C.; Xiong, L. B.; Qi, P. W.; Mu, Q. Q.; Zhao, X. H.; Guo, J.; Deng, Z.; Peng, Y. A hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 2363–2371.

43

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

44

Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 2021, 14, 1533–1540.

45

Xie, Y. H.; Chen, Y.; Liu, L.; Tao, P.; Fan, M. P.; Xu, N.; Shen, X. W.; Yan, C. L. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 2017, 29, 1702268.

46

Mahsud, A.; Chen, J. N.; Yuan, X. L.; Lyu, F.; Zhong, Q. X.; Chen, J. X.; Yin, Y. D.; Zhang, Q. Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Res. 2021, 14, 2819–2825.

47

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

48

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

49

Wang, X.; Yang, Z.; Si, W. Y.; Shen, X. Y.; Li, X. D.; Li, R.; Lv, Q.; Wang, N.; Huang, C. S. Cobalt-nitrogen-doped graphdiyne as an efficient bifunctional catalyst for oxygen reduction and hydrogen evolution reactions. Carbon 2019, 147, 9–18.

50

Yan, L. T.; Jiang, H. M.; Xing, Y. L.; Wang, Y.; Liu, D. D.; Gu, X.; Dai, P. C.; Li, L. J.; Zhao, X. B. Nickel metal-organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. J. Mater. Chem. A 2018, 6, 1682–1691.

51

Li, O. L.; Prabakar, K.; Kaneko, A.; Park, H.; Ishizaki, T. Exploration of lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts. Catal. Today 2019, 337, 102–109.

52

Li, X. G.; Popov, B. N.; Kawahara, T.; Yanagi, H. Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. J. Power Sources 2011, 196, 1717–1722.

53

Pentland, N.; Bockris, J. O. M.; Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: Mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 1957, 104, 182–194.

54

Yoon, H.; Song, H. J.; Ju, B.; Kim, D. W. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Res. 2020, 13, 2469–2477.

55

Yang, Q.; Liu, H. X.; Yuan, P.; Jia, Y.; Zhuang, L. Z.; Zhang, H. W.; Yan, X. C.; Liu, G. H.; Zhao, Y. F.; Liu, J. Z. et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178.

File
12274_2022_4448_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 February 2022
Revised: 14 April 2022
Accepted: 20 April 2022
Published: 31 May 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0403401). The authors gratefully acknowledge the financial support from the China Postdoctoral Science Foundation (Nos. 2021M691759, and 2021TQ0169). This work was supported by Beijing Natural Science Foundation (No. 2224103). We thank the BL11B station at the Shanghai Synchrotron Radiation Facility and the 1W1B and 4B7A stations at the Beijing Synchrotron Radiation Facility.

Return