Journal Home > Volume 15 , Issue 9

Because of their moderate penetration power, β-rays (high-energy electrons) are a useful signal for evaluating the surface contamination of nuclear radiation. However, the development of β-ray scintillators, which convert the absorbed high-energy electrons into visible photons, is hindered by the limitations of materials selection. Herein, we report two highly luminescent zero-dimensional (0D) organic–inorganic lead-free metal halide hybrids, (C13H30N)2MnBr4 and (C19H34N)2MnBr4, as scintillators exhibiting efficient β-ray scintillation. These hybrid scintillators combine the superior properties of organic and inorganic components. For example, organic components that contain light elements C, H, and N enhance the capturing efficiency of β particles; isolated inorganic [MnBr4]2− tetrahedrons serve as highly localized emitting centers to emit intense radioluminescence (RL) under β-ray excitation. Both hybrids show a narrow-band green emission peaked at 518 nm with photoluminescence quantum efficiencies (PLQEs) of 81.3% for (C13H30N)2MnBr4 and 86.4% for (C19H34N)2MnBr4, respectively. To enable the solution processing of this promising metal halide hybrid, we successfully synthesized (C13H30N)2MnBr4 colloidal nanocrystals for the first time. Being excited by β-rays, (C13H30N)2MnBr4 scintillators show a linear response to β-ray dose rate over a broad range from 400 to 2,800 Gy·s−1, and also display robust radiation resistance that 80% of the initial RL intensity can be maintained after an ultrahigh accumulated radiation dose of 240 kGy. This work will open up a new route for the development of β-ray scintillators.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly luminescent zero-dimensional lead-free manganese halides for β-ray scintillation

Show Author's information Linyuan Lian1Wei Qi2( )Huaiyi Ding3Hao Tian1Qi Ye2Yong-Biao Zhao3Long Zhao4Jianbo Gao5Daoli Zhang1,6Jianbing Zhang1,6,7( )
School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Key Laboratory of Yunnan Provincial Higher Education Institutions for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Physics and Astronomy, Ultrafast Photophysics of Quantum Devices Laboratory, Clemson University, Clemson, SC 29634, USA
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China

Abstract

Because of their moderate penetration power, β-rays (high-energy electrons) are a useful signal for evaluating the surface contamination of nuclear radiation. However, the development of β-ray scintillators, which convert the absorbed high-energy electrons into visible photons, is hindered by the limitations of materials selection. Herein, we report two highly luminescent zero-dimensional (0D) organic–inorganic lead-free metal halide hybrids, (C13H30N)2MnBr4 and (C19H34N)2MnBr4, as scintillators exhibiting efficient β-ray scintillation. These hybrid scintillators combine the superior properties of organic and inorganic components. For example, organic components that contain light elements C, H, and N enhance the capturing efficiency of β particles; isolated inorganic [MnBr4]2− tetrahedrons serve as highly localized emitting centers to emit intense radioluminescence (RL) under β-ray excitation. Both hybrids show a narrow-band green emission peaked at 518 nm with photoluminescence quantum efficiencies (PLQEs) of 81.3% for (C13H30N)2MnBr4 and 86.4% for (C19H34N)2MnBr4, respectively. To enable the solution processing of this promising metal halide hybrid, we successfully synthesized (C13H30N)2MnBr4 colloidal nanocrystals for the first time. Being excited by β-rays, (C13H30N)2MnBr4 scintillators show a linear response to β-ray dose rate over a broad range from 400 to 2,800 Gy·s−1, and also display robust radiation resistance that 80% of the initial RL intensity can be maintained after an ultrahigh accumulated radiation dose of 240 kGy. This work will open up a new route for the development of β-ray scintillators.

Keywords: nanocrystals, zero-dimensional, metal halide hybrids, radiation sterilization, β-ray scintillation

References(30)

1
Levitt, S. H.; Purdy, J. A.; Perez, C. A.; Poortmans, P. Technical Basis of Radiation Therapy: Practical Clinical Applications, 5th ed.; Springer: Heidelberg, 2012.
DOI
2

Chiang, C. S.; Shih, I. J.; Shueng, P. W.; Kao, M.; Zhang, L. W.; Chen, S. F.; Chen, M. H.; Liu, T. Y. Tumor cell-targeting radiotherapy in the treatment of glioblastoma multiforme using linear accelerators. Acta Biomater. 2021, 125, 300–311.

3

Pirker, L.; Krajnc, A. P.; Malec, J.; Radulovic, V.; Gradišek, A.; Jelen, A.; Remškar, M.; Mekjavič, I. B.; Kovač, J.; Mozetič, M. et al. Sterilization of polypropylene membranes of facepiece respirators by ionizing radiation. J. Membr. Sci. 2021, 619, 118756.

4

Yu, D. J.; Wang, P.; Cao, F.; Gu, Y.; Liu, J. X.; Han, Z. Y.; Huang, B.; Zou, Y. S.; Xu, X. B.; Zeng, H. B. Two-dimensional halide perovskite as beta-ray scintillator for nuclear radiation monitoring. Nat. Commun. 2020, 11, 3395.

5

Yamato, S.; Yamaji, A.; Kurosawa, S.; Yoshino, M.; Ohashi, Y.; Kamada, K.; Yokota, Y.; Yoshikawa, A. Crystal growth and luminescence properties of organic crystal scintillators for α-rays detection. Opt. Mater. 2019, 94, 58–63.

6

Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93.

7

Heo, J. H.; Shin, D. H.; Park, J. K.; Kim, D. H.; Lee, S. J.; Im, S. H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743.

8

Lian, L. Y.; Wang, X.; Zhang, P.; Zhu, J. S.; Zhang, X. W.; Gao, J. B.; Wang, S.; Liang, G. J.; Zhang, D. L.; Gao, L. et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. J. Phys. Chem. Lett. 2021, 12, 6919–6926.

9

He, Q. Q.; Zhou, C. K.; Xu, L. J.; Lee, S.; Lin, X. S.; Neu, J.; Worku, M.; Chaaban, M.; Ma, B. W. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Mater. Lett. 2020, 2, 633–638.

10

McCall, K. M.; Sakhatskyi, K.; Lehmann, E.; Walfort, B.; Losko, A. S.; Montanarella, F.; Bodnarchuk, M. I.; Krieg, F.; Kelestemur, Y.; Mannes, D. et al. Fast neutron imaging with semiconductor nanocrystal scintillators. ACS Nano 2020, 14, 14686–14697.

11

Weber, M. J. Inorganic scintillators: Today and tomorrow. J. Lumin. 2002, 100, 35–45.

12

Dujardin, C.; Auffray, E.; Bourret-Courchesne, E.; Dorenbos, P.; Lecoq, P.; Nikl, M.; Vasil'ev, A. N.; Yoshikawa, A.; Zhu, R. Y. Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 2018, 65, 1977–1997.

13

Yoshikawa, A.; Chani, V.; Nikl, M. Czochralski growth and properties of scintillating crystals. Acta Phys. Pol. A 2013, 124, 250–264.

14

Kobayashi, S.; Hayakawa, S. Quenching effects of several compounds in naphthalene scintillators. Jpn. J. Appl. Phys. 1965, 4, 181–189.

15

Qin, Y. Y.; She, P. F.; Huang, X. M.; Huang, W.; Zhao, Q. Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331.

16

Morad, V.; Cherniukh, I.; Pöttschacher, L.; Shynkarenko, Y.; Yakunin, S.; Kovalenko, M. V. Manganese(II) in tetrahedral halide environment: Factors governing bright green luminescence. Chem. Mater. 2019, 31, 10161–10169.

17

Zhou, G. J.; Liu, Z. Y.; Huang, J. L.; Molokeev, M. S.; Xiao, Z. W.; Ma, C. G.; Xia, Z. G. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: A case study of (C10H16N)2Zn1−xMnxBr4 solid solutions. J. Phys. Chem. Lett. 2020, 11, 5956–5962.

18

Ma, Y. Y.; Song, Y. R.; Xu, W. J.; Zhong, Q. Q.; Fu, H. Q.; Liu, X. L.; Yue, C. Y.; Lei, X. W. Solvent-free mechanochemical syntheses of microscale lead-free hybrid manganese halides as efficient green light phosphors. J. Mater. Chem. C 2021, 9, 9952–9961.

19

Hu, G. C.; Xu, B.; Wang, A. F.; Guo, Y.; Wu, J. J.; Muhammad, F.; Meng, W.; Wang, C. Y.; Sui, S.; Liu, Y. et al. Stable and bright pyridine manganese halides for efficient white light-emitting diodes. Adv. Funct. Mater. 2021, 31, 2011191.

20

Jiang, T. M.; Ma, W. B.; Zhang, H.; Tian, Y.; Lin, G.; Xiao, W. G.; Yu, X.; Qiu, J. B.; Xu, X. H.; Yang, Y. et al. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater. 2021, 31, 2009973.

21

Xu, L. J.; Lin, X. S.; He, Q. Q.; Worku, M.; Ma, B. W. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nat. Commun. 2020, 11, 4329.

22

Lian, L. Y.; Zheng, M. Y.; Zhang, P.; Zheng, Z.; Du, K.; Lei, W.; Gao, J. B.; Niu, G. D.; Zhang, D. L.; Zhai, T. Y. et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): Highly luminescent self-trapped excitons from local structure symmetrization. Chem. Mater. 2020, 32, 3462–3468.

23

Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.

24

Lian, L. Y.; Zhang, P.; Liang, G. J.; Wang, S.; Wang, X.; Wang, Y.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient dual-band white-light emission with high color rendering from zero-dimensional organic copper iodide. ACS Appl. Mater. Interfaces 2021, 13, 22749–22756.

25

Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. , Int. Ed. 2016, 55, 13887–13892.

26

Hajagos, T. J.; Liu, C.; Cherepy, N. J.; Pei, Q. B. High-Z sensitized plastic scintillators: A review. Adv. Mater. 2018, 30, 1706956.

27

Klitting, O.; Sguerra, F.; Bertrand, G. H. V.; Villemot, V.; Hamel, M. Preparation and characterization of cross-linked plastic scintillators. Polymer 2021, 213, 123214.

28

Zhu, J.; Deng, C.; Jiang, H. M.; Zheng, Z. L.; Gong, R.; Bi, Y. T.; Zhang, L.; Lin, R. X. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 835, 136–141.

29

Peralta, L. Temperature dependence of plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 883, 20–23.

30

Zorn, C. Studies in the radiation resistance of plastic scintillators review and prospects. IEEE Trans. Nucl. Sci. 1990, 37, 504–512.

Video
12274_2022_4447_MOESM3_ESM.mp4
File
12274_2022_4447_MOESM1_ESM.pdf (2.2 MB)
12274_2022_4447_MOESM2_ESM.pdf (2.2 MB)
12274_2022_4447_MOESM4_ESM.cif (1.5 MB)
12274_2022_4447_MOESM5_ESM.cif (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2022
Revised: 24 March 2022
Accepted: 20 April 2022
Published: 27 May 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61974052, 11774239, and 61827815), the Fund from Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20190809180013252), and the Key Research and Development Program of Hubei Province (No. YFXM2020000188). The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology for the help on measurements.

Return