AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Copper-tetracyanoquinodimethane-derived copper electrocatalysts for highly selective carbon dioxide reduction to ethylene

Xuewei Huang1,2,3,§Dawei Wang3,§Shuhao Yan3Pengfei An4,5Jianyu Han3Zhiyu Guo3Xinwei Li1,2,3Zhongjun Chen5Lin Chang3Siyu Lu1,2Zhiyong Tang1,2,3,4( )
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Institute of High Energy Physics Chinese Academy of Sciences, Beijing 100049, China

§ Xuewei Huang and Dawei Wang contributed equally to this work.

Show Author Information

Graphical Abstract

We report an in situ conversion strategy to achieve CuTCNQ-Cu catalysts. The synergistic effect between Cu+ and grain boundaries of Cu nanoparticles inside CuTCNQ-Cu catalysts bestows the high catalytic performance in the challenging electrochemical CO2 reduction.

Abstract

As one of the most promising CO2 utilization techniques, electrochemical CO2 reduction has recently received considerable attention. Cu is a unique electrocatalyst that can convert CO2 to value-added multi-carbon chemicals. Nevertheless, Cu catalysts are always limited by the poor selectivity and stability. Here, we report that using copper-tetracyanoquinodimethane (CuTCNQ) derived Cu nanoparticles as efficient electrocatalysts for conversion of CO2 to ethylene characteristic with high selectivity and stability, showing 56% Faradaic efficiency (FE) to C2H4 at −1.3 V vs. reversible hydrogen electrode (RHE). Upon the electrochemical CO2 reduction, CuTCNQ slowly reconstructs to Cu nanoparticles with abundant grain boundaries and residual Cu+ on the surface. Theoretical calculation and operando characterization disclose that both as-formed Cu nanoparticle grain boundaries and residual Cu+ endow the catalyst with high selectivity toward ethylene. Furthermore, during the reconstruction of CuTCNQ to Cu nanoparticles, the grain boundaries Cu surface is slowly refreshed by continual addition of Cu atoms, thus inhibiting the surface passivation and guaranteeing the electrocatalytic stability.

Electronic Supplementary Material

Download File(s)
12274_2022_4446_MOESM1_ESM.pdf (3.6 MB)

References

1

Fawcett, A. A.; Iyer, G. C.; Clarke, L. E.; Edmonds, J. A.; Hultman, N. E.; McJeon, H. C.; Rogelj, J.; Schuler, R.; Alsalam, J.; Asrar, G. R. et al. Can Paris pledges avert severe climate change. Science 2015, 350, 1168–1169.

2

Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2015, 534, 631–639.

3

Fuss, S.; Canadell, J. G.; Peters, G. P.; Tavoni, M.; Andrew, R. M.; Ciais, P.; Jackson, R. B.; Jones, C. D.; Kraxner, F.; Nakicenovic, N. et al. Betting on negative emissions. Nat. Clim. Change 2014, 4, 850–853.

4

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

5

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

6

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

7

Li, S. T.; Nagarajan, A. V.; Alfonso, D. R.; Sun, M. K.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 6351–6356.

8

Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 14563–14570.

9

Sun, Y. N.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. Y. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021, 11, 11551–11560.

10

Yuan, S. F.; He, R. L.; Han, X. S.; Wang, J. Q.; Guan, Z. J.; Wang, Q. M. Robust gold nanocluster protected with amidinates for electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 14345–14349.

11

Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

12

Wu, X. H.; Guo, Y N.; Sun, Z. S.; Xie, F. H.; Guan, D. Q.; Dai, J.; Yu, F. J.; Hu, Z. W.; Huang, Y. C.; Pao, C. W. et al. Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction. Nat. Commun. 2021, 12, 660.

13

Wang, X. Y.; Wang, Y.; Sang, X. H.; Zheng, W. Z.; Zhang, S. H.; Shuai, L.; Yang, B.; Li, Z. J.; Chen, J. M.; Lei, L. C. et al. Dynamic activation of adsorped intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4192–4198.

14

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

15

Han, J. Y.; An, P. F.; Liu, S. H.; Zhang, X. F.; Wang, D. W.; Yuan, Y.; Guo, J.; Qiu, X. Y.; Hou, K.; Shi, L. et al. Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 12711–12716.

16

Wang, W.; Shang, L.; Chang, G. J.; Yan, C.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.

17

Nam, D. H.; Shekhah, O.; Lee, G.; Mallick, A.; Jiang, H.; Li, F. W.; Chen, B.; Wicks, J.; Eddaoudi, M.; Sargent, E. H. Intermediate binding control using metal-organic frameworks enhances electrochemical CO2 reduction. J. Am. Chem. Soc. 2020, 142, 21513–21521.

18

Majidi, L.; Ahmadiparidari, A.; Shan, N. N.; Misal, S. N.; Kumar, K.; Huang, Z. H.; Rastegar, S.; Hemmat, Z.; Zou, X. D.; Zapol, P. et al. 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials. Adv. Mater. 2021, 33, e2004393.

19

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

20

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating n-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

21

Liu, M.; Wang, Y. R.; Ding, H. M.; Lu, M.; Gao, G. K.; Dong, L. Z.; Li, Q.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Self-assembly of anthraquinone covalent organic frameworks as 1D superstructures for highly efficient CO2 electroreduction to CH4. Sci. Bull. 2021, 66, 1659–1668.

22

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

23

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

24

Ling, Y. F.; Ma, Q. L.; Yu, Y. F.; Zhang, B. Optimization strategies for selective CO2 electroreduction to fuels. Trans. Tianjin Univ. 2021, 27, 180–200.

25

Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

26

Gu, Z. X.; Shen, H.; Shang, L. M.; Lv, X. M.; Qian, L. P.; Zheng, G. F. Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods 2018, 2, 1800121.

27

Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119.

28

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

29

Goyal, A.; Marcandalli, G.; Mints, V. A.; Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 2020, 142, 4154–4161.

30

Lees, E. W.; Mowbray, B. A. W.; Parlane, F. G. L.; Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 2022, 7, 55–64.

31

Hori, Y.; Konishi, H.; Futamura, T.; Murata, A.; Koga, O.; Sakurai, H.; Oguma, K. “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim. Acta 2005, 50, 5354–5369.

32

Lee, J.; Tak, Y. Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochim. Acta 2001, 46, 3015–3022.

33

Huang, J. F.; Hormann, N.; Oveisi, E.; Loiudice, A.; De Gregorio, G. L.; Andreussi, O.; Marzari, N.; Buonsanti, R. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 2018, 9, 3117.

34

Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

35

Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 2015, 137, 9808–9811.

36

Heintz, R. A.; Zhao, H. H.; Ouyang, X.; Grandinetti, G.; Cowen, J.; Dunbar, K. R. New insight into the nature of Cu (TCNQ): Solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 1999, 38, 144–156.

37

Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

38

Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.

39

Funabiki, A.; Mochida, T.; Takahashi, K.; Mori, H.; Sakurai, T.; Ohtad, H.; Uruichi, M. Reversible iodine absorption by alkali-TCNQ salts with associated changes in physical properties. J. Mater. Chem. 2012, 22, 8361–8366.

40

Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820.

41

Cai, Y. F.; Fu, J. J.; Zhou, Y.; Chang, Y. C.; Min, Q. H.; Zhu, J. J.; Lin, Y. H.; Zhu, W. L. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.

42

Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2016, 2, 169–174.

43

Schouten, K. J. P.; Kwon, Y.; Van Der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2, 1902–1909.

44

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

45

Xiao, H.; Goddard, W. A.; Cheng, T.; Liu, Y. Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6685–6688.

Nano Research
Pages 7910-7916
Cite this article:
Huang X, Wang D, Yan S, et al. Copper-tetracyanoquinodimethane-derived copper electrocatalysts for highly selective carbon dioxide reduction to ethylene. Nano Research, 2022, 15(9): 7910-7916. https://doi.org/10.1007/s12274-022-4446-8
Topics:

1562

Views

16

Crossref

15

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 20 March 2022
Revised: 17 April 2022
Accepted: 19 April 2022
Published: 08 June 2022
© Tsinghua University Press 2022
Return