Journal Home > Volume 15 , Issue 12

Heterogenized phthalocyanine-based molecular catalysts are the ideal electrocatalytic platforms for CO2 reduction reaction (CO2RR) because of their well-defined structures and potential properties. In addition to the pursuit of catalytic performances at industrial potentials, it is equally important to explore experimental rules and design considerations behind activity and selectivity. Herein, we successfully developed a series of nickel phthalocyanines (NiPcs) with different alkyl chains immobilized on multi-walled carbon nanotubes (CNT) to unveil the structure–performance relationship for electrocatalytic CO2RR in neutral electrolyte. Interestingly, a volcano-type trend was found between the activity for CO2-to-CO conversion and alkyl chain lengths of NiPcs on CNT. Experimental results further indicate that their electrocatalytic CO2RR activities are highly related to the molecular dispersion and the heterointerfacial charge transfer capability adjusted by the alkyl chains. Particularly, the optimized electrocatalyst via accurate clipping at the molecular level exhibits an ultrahigh activity with Faradaic efficiency of CO up to 99.52%.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level

Show Author's information Meng-Ke Hu1,2Ning Wang1,2Dong-Dong Ma1( )Qi-Long Zhu1,2,3( )
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS), Fuzhou 350002, China
College of Chemistry, Fuzhou University, Fuzhou 350002, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China

Abstract

Heterogenized phthalocyanine-based molecular catalysts are the ideal electrocatalytic platforms for CO2 reduction reaction (CO2RR) because of their well-defined structures and potential properties. In addition to the pursuit of catalytic performances at industrial potentials, it is equally important to explore experimental rules and design considerations behind activity and selectivity. Herein, we successfully developed a series of nickel phthalocyanines (NiPcs) with different alkyl chains immobilized on multi-walled carbon nanotubes (CNT) to unveil the structure–performance relationship for electrocatalytic CO2RR in neutral electrolyte. Interestingly, a volcano-type trend was found between the activity for CO2-to-CO conversion and alkyl chain lengths of NiPcs on CNT. Experimental results further indicate that their electrocatalytic CO2RR activities are highly related to the molecular dispersion and the heterointerfacial charge transfer capability adjusted by the alkyl chains. Particularly, the optimized electrocatalyst via accurate clipping at the molecular level exhibits an ultrahigh activity with Faradaic efficiency of CO up to 99.52%.

Keywords: carbon nanotubes, CO2 reduction reaction, structure–performance relationship, nickel phthalocyanines, alkyl chains

References(44)

[1]

Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic–inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.

[2]

Zhu, H. J.; Lu, M.; Wang, Y. R.; Yao, S. J.; Zhang, M.; Kan, Y. H.; Liu, J.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat. Commun. 2020, 11, 497.

[3]

Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

[4]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

[5]

Han, S. G.; Ma, D. D.; Zhu, Q. L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction. Small Methods 2021, 5, 2100102.

[6]

Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.

[7]

Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

[8]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[9]

Chen, J. Y.; Wang, T. T.; Wang, X. Y.; Yang, B.; Sang, X. H.; Zheng, S. X.; Yao, S. Y.; Li, Z. J.; Zhang, Q. H.; Lei, L. C. et al. Promoting electrochemical CO2 reduction via boosting activation of adsorbed intermediates on iron single-atom catalyst. Adv. Funct. Mater. 2022, 32, 2110174.

[10]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. , Int. Ed. 2021, 60, 13388–13393.

[11]

Han, S. G.; Ma, D. D.; Zhou, S. H.; Zhang, K. X.; Wei, W. B.; Du, Y. H.; Wu, X. T.; Xu, Q.; Zou, R. Q.; Zhu, Q. L. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B:Environ. 2021, 283, 119591.

[12]

Zhang, Y. K.; Wang, X. Y.; Zheng, S. X.; Yang, B.; Li, Z. J.; Lu, J. G.; Zhang, Q. H.; Adli, N. M.; Lei, L. C.; Wu, G. et al. Hierarchical cross-linked carbon aerogels with transition metal-nitrogen sites for highly efficient industrial-level CO2 electroreduction. Adv. Funct. Mater. 2021, 31, 2104377.

[13]

Zou, Y. Q.; Wang, S. Y. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.

[14]

Chen, J. Y.; Li, Z. J.; Wang, X. Y.; Sang, X. H.; Zheng, S. X.; Liu, S. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Dai, L. M. et al. Promoting CO2 electroreduction kinetics on atomically dispersed monovalent ZnI sites by rationally engineering proton-feeding centers. Angew. Chem. , Int. Ed. 2022, 61, e202111683.

[15]

Chen, Z. P.; Zhang, X. X.; Liu, W.; Jiao, M. Y.; Mou, K. W.; Zhang, X. P.; Liu, L. C. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 2021, 14, 2349–2356.

[16]

Wei, S. T.; Zou, H. Y.; Rong, W. F.; Zhang, F. X.; Ji, Y. F.; Duan, L. L. Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window. Appl. Catal. B:Environ. 2021, 284, 119739.

[17]

Lu, X. L.; Rong, X.; Zhang, C.; Lu, T. B. Carbon-based single-atom catalysts for CO2 electroreduction: Progress and optimization strategies. J. Mater. Chem. A 2020, 8, 10695–10708.

[18]

Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

[19]

Zheng, W. Z.; Wang, Y.; Shuai, L.; Wang, X. Y.; He, F.; Lei, C. J.; Li, Z. J.; Yang, B.; Lei, L. C.; Yuan, C. et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 2021, 31, 2008146.

[20]

Lu, Y. X.; Zou, Y. Q.; Zhao, W. X.; Wang, M. X.; Li, C. Y.; Liu, S. M.; Wang, S. Y. Nanostructured electrocatalysts for electrochemical carboxylation with CO2. Nano Select 2020, 1, 135–151.

[21]

Luo, Y. F.; Xia, C. B.; Abulizi, R.; Feng, Q. J.; Liu, W. P.; Zhang, A. H. Electrocatalysis of CO2 reduction on nano silver cathode in ionic liquid BMIMBF4: Synthesis of dimethylcarbonate. Int. J. Electrochem. Sci. 2017, 12, 4828–4834.

[22]

Zhang, X. Y.; Lin, R. J.; Meng, X. M.; Li, W.; Chen, F. S.; Hou, J. W. Iron phthalocyanine/two-dimensional metal-organic framework composite nanosheets for enhanced alkaline hydrogen evolution. Inorg. Chem. 2021, 60, 9987–9995.

[23]

Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem. , Int. Ed. 2018, 57, 8614–8618.

[24]

Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016, 6, 3092–3095.

[25]

Karapinar, D.; Zitolo, A.; Huan, T. N.; Zanna, S.; Taverna, D.; Tizei, L. H. G.; Giaume, D.; Marcus, P.; Mougel, V.; Fontecave, M. Carbon-nanotube-supported copper polyphthalocyanine for efficient and selective electrocatalytic CO2 reduction to CO. ChemSusChem 2020, 13, 173–179.

[26]

Guo, J.; Yan, X. M.; Liu, Q.; Li, Q.; Xu, X.; Kang, L. T.; Cao, Z. M.; Chai, G. L.; Chen, J.; Wang, Y. B. et al. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347–355.

[27]

Yan, X. M.; Xu, X.; Zhong, Z.; Liu, J. J.; Tian, X. M.; Kang, L. T.; Yao, J. N. The effect of oxygen content of carbon nanotubes on the catalytic activity of carbon-based iron phthalocyanine for oxygen reduction reaction. Electrochim. Acta 2018, 281, 562–570.

[28]

Yang, S. X.; Yu, Y. H.; Gao, X. J.; Zhang, Z. P.; Wang, F. Recent advances in electrocatalysis with phthalocyanines. Chem. Soc. Rev. 2021, 50, 12985–13011.

[29]

Ren, X. Y.; Liu, S.; Li, H. C.; Ding, J.; Liu, L. H.; Kuang, Z. C.; Li, L.; Yang, H. B.; Bai, F. Q.; Huang, Y. Q. et al. Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst. Sci. China Chem. 2020, 63, 1727–1733.

[30]

Zhu, M. H.; Chen, J. C.; Guo, R.; Xu, J.; Fang, X. C.; Han, Y. F. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B: Environ. 2019, 251, 112–118.

[31]

Zhang, X.; Wang, Y.; Gu, M.; Wang, M. Y.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692.

[32]

Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.

[33]

Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 31, 2111322.

[34]

Ma, D. D.; Han, S. G.; Cao, C. S.; Wei, W. B.; Li, X. F.; Chen, B.; Wu, X. T.; Zhu, Q. L. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ. Sci. 2021, 14, 1544–1552.

[35]

Wang, R.; Wang, X. Y.; Weng, W. J.; Yao, Y.; Kidkhunthod, P.; Wang, C. C.; Hou, Y.; Guo, J. Proton/electron donors enhancing electrocatalytic activity of supported conjugated microporous polymers for CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202115503.

[36]

Ma, D. D.; Han, S. G.; Cao, C. S.; Li, X. F.; Wu, X. T.; Zhu, Q. L. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine. Appl. Catal. B:Environ. 2020, 264, 118530.

[37]

Choi, J.; Wagner, P.; Gambhir, S.; Jalili, R.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 2019, 4, 666–672.

[38]

Yslas, E. I.; Rivarola, V.; Durantini, E. N. Synthesis and photodynamic activity of zinc(II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media. Bioorgan. Med. Chem. 2005, 13, 39–46.

[39]

Gong, S. H.; Wang, W. B.; Xiao, X. X.; Liu, J.; Wu, C. D.; Lv, X. M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion. Nano Energy 2021, 84, 105904.

[40]

Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

[41]

Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

[42]

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

[43]

Zhu, M. H.; Ye, R. Q.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 2018, 3, 1381–1386.

[44]

Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

File
12274_2022_4444_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2022
Revised: 19 April 2022
Accepted: 19 April 2022
Published: 13 May 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors are grateful for the financial supports of the National Key R&D Program of China (No. 2021YFA1500402), the National Natural Science Foundation of China (NSFC) (Nos. 21901246, 22105203, and 22175174), and the Natural Science Foundation of Fujian Province (Nos. 2020J01116 and 2021J06033).

Return