Journal Home > Volume 15 , Issue 9

The theft prevention for cultural relics in museums, field excavation sites, and temporary exhibition events is of extreme importance. However, traditional anti-theft technologies such as infrared monitoring and radio frequency identification are highly costly, power-consuming, and easy to break. Here, a transparent, ultrathin, and flexible triboelectric sensor (TUFS) with a simple and low-cost method is proposed. With a thickness, weight, and transmittance of 92 μm, 0.12 g, and 89.4%, the TUFS manifests superb concealment. Benefiting from the characteristic of triboelectric nanogenerators, the TUFS responds effectively to common cultural-relic materials. Moreover, distinguished electrical responses can be obtained even for very small weights (10 g) and areas (1 cm2), proving the sensitivity and wide range of use of the TUFS. Finally, we construct a concealed cultural-relic anti-theft system that enables real-time alarming and accurate positioning of cultural relics, which is expected to strengthen the security level of the existing museum anti-theft systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems

Show Author's information Baocheng wang1,2Xiaoying Zhai3Xuelian Wei1,2Yapeng Shi1,2Xiaoqing Huo1,2Ruonan Li1Zhiyi Wu1,2,4( )Zhong Lin Wang1,2,4,5( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
College of Nanoscience and Technology, University of Chinese Academy of Science, Beijing 100049, China
Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
CUSTech Institute of Technology, Wenzhou 325024, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

The theft prevention for cultural relics in museums, field excavation sites, and temporary exhibition events is of extreme importance. However, traditional anti-theft technologies such as infrared monitoring and radio frequency identification are highly costly, power-consuming, and easy to break. Here, a transparent, ultrathin, and flexible triboelectric sensor (TUFS) with a simple and low-cost method is proposed. With a thickness, weight, and transmittance of 92 μm, 0.12 g, and 89.4%, the TUFS manifests superb concealment. Benefiting from the characteristic of triboelectric nanogenerators, the TUFS responds effectively to common cultural-relic materials. Moreover, distinguished electrical responses can be obtained even for very small weights (10 g) and areas (1 cm2), proving the sensitivity and wide range of use of the TUFS. Finally, we construct a concealed cultural-relic anti-theft system that enables real-time alarming and accurate positioning of cultural relics, which is expected to strengthen the security level of the existing museum anti-theft systems.

Keywords: triboelectric nanogenerator, self-powered, concealed sensor, cultural relic, anti-theft

References(37)

1

Wei, Q. W. ; Yang, C. P. The design of indoor infrared alarm. Appl. Mech. Mater 2014, 651–653, 1105–1108.

2

Ke, G.; Jiang, Q. J. Application of internet of things technology in the construction of wisdom museum. Concurr. Comput. Pract. Exp. 2019, 31, e4680.

3

Han, J. H.; Ma, Y.; Huang, J.; Mei, X. G.; Ma, J. Y. An infrared small target detecting algorithm based on human visual system. IEEE Geosci. Remote Sens. Lett. 2016, 13, 452–456.

4

Liu, Z. L.; Wang, M.; Qi, S. K.; Yang, C. C. Study on the anti-theft technology of museum cultural relics based on internet of things. IEEE Access 2019, 7, 111387–111395.

5

Chen, S.; Song, Y. J.; Xu, F. Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl. Mater. Interfaces 2018, 10, 34646–34654.

6

Yang, Y.; Pan, H.; Xie, G. Z.; Jiang, Y. D.; Chen, C. X.; Su, Y. J.; Wang, Y.; Tai, H. L. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators A Phys. 2020, 301, 111789.

7

Kim, H. J.; Kim, Y. J. High performance flexible piezoelectric pressure sensor based on CNTs-doped 0–3 ceramic-epoxy nanocomposites. Mater. Des. 2018, 151, 133–140.

8

Mishra, R. B.; El-Atab, N.; Hussain, A. M.; Hussain, M. M. Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Adv. Mater. Technol. 2021, 6, 2001023.

9

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

10

Wang, Z. L. From contact-electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

11

Wang, Z. L. On the expanded maxwell’s equations for moving charged media system–general theory, mathematical solutions and applications in TENG. Mater. Today 2022, 52, 348–363.

12

Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J. M.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives. Energy Environ. Sci. 2020, 13, 2657–2683.

13

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

14

Wu, Z. Y.; Cheng, T. H.; Wang, Z. L. Self-powered sensors and systems based on nanogenerators. Sensors 2020, 20, 2925.

15

Chen, J. H.; Wei, X. L.; Wang, B. C.; Li, R. N.; Sun, Y. G.; Peng, Y. T.; Wu, Z. Y.; Wang, P.; Wang, Z. L. Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance. Adv. Energy Mater. 2021, 11, 2102106.

16

Chen, Y. F.; Gao, Z. Q.; Zhang, F. J.; Wen, Z.; Sun, X. H. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.

17

Zhang, T. T.; Wen, Z.; Liu, Y. N.; Zhang, Z. Y.; Xie, Y. L.; Sun, X. H. Hybridized nanogenerators for multifunctional self-powered sensing: Principles, prototypes, and perspectives. iScience 2020, 23, 101813.

18

Wu, Z. Y.; Guo, H. Y.; Ding, W. B.; Wang, Y. C.; Zhang, L.; Wang, Z. L. A Hybridized triboelectric–electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 2019, 13, 2349–2356.

19

Wu, Z. Y.; Zhang, B. B.; Zou, H. Y.; Lin, Z. M.; Liu, G. L.; Wang, Z. L. Multifunctional sensor based on translational‐rotary triboelectric nanogenerator. Adv. Energy Mater. 2019, 9, 1901124.

20

Li, R. N.; Wei, X. L.; Xu, J. H.; Chen, J. H.; Li, B.; Wu, Z. Y.; Wang, Z. L. Smart wearable sensors based on triboelectric nanogenerator for personal healthcare monitoring. Micromachines 2021, 12, 352.

21

Wei, X. L.; Zhao, Z. H.; Zhang, C. G.; Yuan, W.; Wu, Z. Y.; Wang, J.; Wang, Z. L. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 2021, 15, 13200–13208.

22

Wang, H. Y.; Wang, J. Q.; Yao, K. M.; Fu, J. J.; Xia, X.; Zhang, R. R.; Li, J. Y.; Xu, G. Q.; Wang, L. Y.; Yang, J. C. et al. A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Sci. Adv. 2021, 7, eabi6751.

23

Wu, H.; Wang, S.; Wang, Z. K.; Zi, Y. L. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470.

24

He, X. M.; Guo, H. Y.; Yue, X. L.; Gao, J.; Xi, Y.; Hu, C. G. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 2015, 7, 1896–1903.

25

Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2021, 4, 147–153.

26

Meng, K. Y.; Wu, Y. F.; He, Q.; Zhou, Z. H.; Wang, X.; Zhang, G. Q.; Fan, W. J.; Liu, J.; Yang, J. Ultrasensitive fingertip-contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces. ACS Appl. Mater. Interfaces 2019, 11, 46399–46407.

27

Shi, Q. F.; Zhang, Z. X.; He, T. Y. Y.; Sun, Z. D.; Wang, B. J.; Feng, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 2020, 11, 4609.

28

Wen, F.; Sun, Z. D.; He, T. Y. Y.; Shi, Q. F.; Zhu, M. L.; Zhang, Z. X.; Li, L. H.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261.

29

Yang, X. Y.; Liu, G. Q.; Guo, Q. Y.; Wen, H. Y.; Huang, R. Y.; Meng, X. H.; Duan, J. L.; Tang, Q. W. Triboelectric sensor array for internet of things based smart traffic monitoring and management system. Nano Energy 2022, 92, 106757.

30

Gao, Y. Y.; Liu, G. X.; Bu, T. Z.; Liu, Y. Y.; Qi, Y. C.; Xie, Y. T.; Xu, S. H.; Deng, W. L.; Yang, W. Q.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 2021, 14, 4833–4840.

31

Liu, L.; Tang, W.; Deng, C. R.; Chen, B. D.; Han, K.; Zhong, W.; Wang, Z. L. Self-powered versatile shoes based on hybrid nanogenerators. Nano Res. 2018, 11, 3972–3978.

32

Lei, H.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.

33

Chen, C.; Wen, Z.; Shi, J. H.; Jian, X. H.; Li, P. Y.; Yeow, J. T. W.; Sun, X. H. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143.

34

Ke, K. H.; Chung, C. K. High-performance Al/PDMS TENG with novel complex morphology of two-height microneedles array for high-sensitivity force-sensor and self-powered application. Small 2020, 16, 2001209.

35

Shi, Y. P.; Wei, X. L.; Wang, K. M.; He, D. D.; Yuan, Z. H.; Xu, J. H.; Wu, Z. Y.; Wang, Z. L. Integrated all-fiber electronic skin toward self-powered sensing sports systems. ACS Appl. Mater. Interfaces 2021, 13, 50329–50337.

36

Sun, J.; Zhou, W. H.; Yang, H. B.; Zhen, X.; Ma, L. F.; Williams, D.; Sun, X. D.; Lang, M. F. Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels. Chem. Commun. 2018, 54, 4923–4926.

37

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

Video
12274_2022_4443_MOESM2_ESM.mp4
File
12274_2022_4443_MOESM1_ESM.pdf (324.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 February 2022
Revised: 16 April 2022
Accepted: 19 April 2022
Published: 16 May 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 61503051).

Return