Journal Home > Volume 15 , Issue 9

The atomically dispersed Fe3+ sites of Fe-N-C single-site catalysts (SSCs) are demonstrated as the active sites for CO2 electroreduction (CO2RR) to CO but suffer from the reduction to Fe2+ at ~ −0.5 V, accompanied by the drop of CO faradaic efficiency (FECO) and deterioration of partial current (JCO). Herein, we report the construction of F-doped Fe-N-C SSCs and the electron-withdrawing character of fluorine could stabilize Fe3+ sites, which promotes the FECO from the volcano-like highest value (88.2%@−0.40 V) to the high plateau (> 88.5%@−0.40–−0.60 V), with a much-increasedJCO (from 3.24 to 11.23 mA·cm−2). The enhancement is ascribed to the thermodynamically facilitated CO2RR and suppressed competing hydrogen evolution reaction, as well as the kinetically increased electroactive surface area and improved charge transfer, due to the stabilized Fe3+ sites and enriched defects by fluorine doping. This finding provides an efficient strategy to enhance the CO2RR performance of Fe-N-C SSCs by stabilizing Fe3+.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting faradaic efficiency of CO2 electroreduction to CO for Fe-N-C single-site catalysts by stabilizing Fe3+ sites via F-doping

Show Author's information Yiqun ChenGuochang LiYu ZengLijie YanXizhang WangLijun Yang( )Qiang Wu( )Zheng Hu( )
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Abstract

The atomically dispersed Fe3+ sites of Fe-N-C single-site catalysts (SSCs) are demonstrated as the active sites for CO2 electroreduction (CO2RR) to CO but suffer from the reduction to Fe2+ at ~ −0.5 V, accompanied by the drop of CO faradaic efficiency (FECO) and deterioration of partial current (JCO). Herein, we report the construction of F-doped Fe-N-C SSCs and the electron-withdrawing character of fluorine could stabilize Fe3+ sites, which promotes the FECO from the volcano-like highest value (88.2%@−0.40 V) to the high plateau (> 88.5%@−0.40–−0.60 V), with a much-increasedJCO (from 3.24 to 11.23 mA·cm−2). The enhancement is ascribed to the thermodynamically facilitated CO2RR and suppressed competing hydrogen evolution reaction, as well as the kinetically increased electroactive surface area and improved charge transfer, due to the stabilized Fe3+ sites and enriched defects by fluorine doping. This finding provides an efficient strategy to enhance the CO2RR performance of Fe-N-C SSCs by stabilizing Fe3+.

Keywords: single-site catalysts, carbon dioxide electroreduction, iron-nitrogen-carbon, fluorine-doping, active site regulation

References(45)

1

Do, T. N.; You, C.; Kim, J. A CO2 utilization framework for liquid fuels and chemical production: Techno-economic and environmental analysis. Energy Environ. Sci. 2022, 15, 169–184.

2

Haszeldine, R. S. Carbon capture and storage: How green can black be? Science 2009, 325, 1647–1652.

3

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

4

Zhu, P.; Wang, H. T. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 2021, 4, 943–951.

5

Liang, S. Y.; Huang, L.; Gao, Y. S.; Wang, Q.; Liu, B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: The active sites and reaction mechanism. Adv. Sci. 2021, 8, 2102886.

6

Li, Y. X.; Zhang, S. L.; Cheng, W. R.; Chen, Y.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO2 electroreduction. Adv. Mater. 2022, 34, 2105204.

7

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. , Int. Ed. 2021, 60, 23614–23618.

8

Pan, F. P.; Li, B. Y.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X. H.; Xiang, X. M.; Adli, N. M.; Li, T.; Su, D. et al. Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy 2020, 68, 104384.

9

Li, H. D.; Pan, Y.; Wang, Z. C.; Yu, Y. D.; Xiong, J.; Du, H. Y.; Lai, J. P.; Wang, L.; Feng S. H. Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Res. 2022, 15, 3056–3064.

10

Jin, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

11

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

12

Han, S. G.; Ma, D. D.; Zhou, S. H.; Zhang, K. X.; Wei, W. B.; Du, Y. H.; Wu, X. T.; Xu, Q.; Zou, R. Q.; Zhu, Q. L. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B-Environ. 2021, 283, 119591.

13

Jia, C.; Li, S. N.; Zhao, Y.; Hocking, R. K.; Ren, W. H.; Chen, X. J.; Su, Z.; Yang, W. F.; Wang, Y.; Zheng, S. S. et al. Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2107072.

14

Wang, X. Y.; Wang, Y.; Sang, X. H.; Zheng, W. Z.; Zhang, S. H.; Shuai, L.; Yang, B.; Li, Z. J.; Chen, J. M.; Lei, L. C. et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4192–4198.

15

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

16

Chen, Y. Q.; Yao, Y. J.; Xia, Y. J.; Mao, K.; Tang, G. A.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Sun, X. H.; Hu, Z. Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777–2783.

17

Hu, C.; Bai, S. L.; Gao, L. J.; Liang, S. C.; Yang, J.; Cheng, S. D.; Mi, S. B.; Qiu, J. S. Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts. ACS Catal. 2019, 9, 11579–11588.

18

Li, X. G.; Xi, S. B.; Sun, L. B.; Dou, S.; Huang, Z. F.; Su, T.; Wang, X. Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv. Sci. 2020, 7, 2001545.

19

Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.

20

Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu K. H.; Zhang X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318–2323.

21

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

22

Leonard, N.; Ju, W.; Sinev, I.; Steinberg, J.; Luo, F.; Varela, A. S.; Cuenya, B. R.; Strasser, P. The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe-nitrogen-carbon (Fe-N-C) materials. Chem. Sci. 2018, 9, 5064–5073.

23

Li, E. L.; Yang, F.; Wu, Z. M.; Wang, Y.; Ruan, M. B.; Song, P.; Xing, W.; Xu, W. L. A bifunctional highly efficient FeNx/C electrocatalyst. Small 2018, 14, 1702827.

24

Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.; Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.

25

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

26

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

27

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

28

Cheng, Q. Q.; Mao, K.; Ma, L. S.; Yang, L. J.; Zou, L. L.; Zou, Z. Q.; Hu, Z.; Yang, H. Encapsulation of iron nitride by Fe-N-C shell enabling highly efficient electroreduction of CO2 to CO. ACS Energy Lett. 2018, 3, 1205–1211.

29
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. et al. Gaussian 16, Revision A. 03; Gaussian, Inc. : Wallingford, CT, 2016.
30

Humphrey, W.; Dalke, A.; Schulten, K. VMD:Visual molecular dynamics. J. Molec. Graphics 1996, 14, 33–38.

31

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

32
Dennington, R. ; Keith, T. ; Millam, J. GaussView, Version 6.09, Semichem Inc.: Shawnee Mission, KS, 2016.
33

Zhang, Z. Q.; Ge, C. X.; Chen, Y. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Construction of cobalt/nitrogen/carbon electrocatalysts with highly exposed active sites for oxygen reduction reaction. Acta Chim. Sin. 2019, 77, 60–65.

34

Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 14871–14876.

35

Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Gang, Y.; Xiang, X. M.; Du, Z. C.; Zhang, P.; Wang, G. F.; Nguyen, H. T. et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 2020, 14, 5506–5516.

36

Tuo, J. Q.; Lin, Y. X.; Zhu, Y. H.; Jiang, H. L.; Li, Y. H.; Cheng, L.; Pang, R. C.; Shen, J. H.; Song, L.; Li, C. Z. Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B-Environ. 2020, 272, 118960.

37

Pan, F. P.; Li, B. Y.; Xiang, X. M.; Wang, G. F.; Li, Y. Efficient CO2 electroreduction by highly dense and active pyridinic nitrogen on holey carbon layers with fluorine engineering. ACS Catal. 2019, 9, 2124–2133.

38

Pan, F. P.; Zhao, H. L.; Deng, W.; Feng, X. H.; Li, Y. A novel N, Fe-Decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. Electrochim. Acta 2018, 273, 154–161.

39

Peng, H. L.; Liu, F. F.; Qiao, X. C.; Xiong, Z. A.; Li, X. H.; Shu, T.; Liao, S. J. Nitrogen and fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE. Electrochim. Acta 2015, 182, 963–970.

40

Liu, Y.; Li, Q. Y.; Guo, X.; Kong, X. D.; Ke, J. W.; Chi, M. F.; Li, Q. X.; Geng, Z. G.; Zeng, J. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Adv. Mater. 2020, 32, 1907690.

41

Yang, C. M.; An, K. H.; Park, J. S.; Park, K. A.; Lim, S. C.; Cho, S. H.; Lee, Y, S.; Park, W.; Park, C. Y.; Lee, Y. H. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419.

42

Fu, X. G.; Li, N.; Ren, B. H.; Jiang, G. P.; Liu, Y. R.; Hassan, F. M.; Su, D.; Zhu, J. B.; Yang, L.; Bai, Z. Y. et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy Mater. 2019, 9, 1803737.

43

Chen, B. T.; Li, B. R.; Tian, Z. Q.; Liu, W. B.; Liu, W. P.; Sun, W. W.; Wang, K.; Chen, L.; Jiang, J. Z. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni-N4 sites. Adv. Energy Mater. 2021, 11, 2102152.

44

Chen, Z. P.; Mou, K. W.; Wang, X. H.; Liu, L. C. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem., Int. Ed. 2018, 57, 12790–12794.

45

Wang, Q.; Zhou, Z. Y.; Lai, Y. J.; You, Y.; Liu, J. G.; Wu, X. L.; Terefe, E.; Chen, C.; Song, L.; Rauf, M. et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 2014, 136, 10882–10885.

File
12274_2022_4441_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 March 2022
Revised: 06 April 2022
Accepted: 15 April 2022
Published: 04 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was jointly supported by the National Key Research and Development Program of China (Nos. 2021YFA1500900, 2017YFA0206500, and 2018YFA0209103), the National Natural Science Foundation of China (Nos. 21832003, 21972061, and 52071174), the Natural Science Foundation of Jiangsu Province, Major Project (No. BK20212005), and Nanjing University Innovation Program for PhD candidate (No. CXYJ21-38).

Return