Journal Home > Volume 15 , Issue 10

Developing a cotton fabric sensing layer with good waterproofness and breathability via a low-cost and eco-friendly method is increasingly important for the construction of comfortable and wearable electronic devices. Herein, a waterproof and breathable cotton fabric composite decorated by reduced graphene oxide (rGO) and carbon nanotube (CNT), Cotton/rGO/CNT, is reported by a facile solution infiltration method, and we adopt such Cotton/rGO/CNT composite to develop a layer-by-layer structured multifunctional flexible sensor, enabling the high-sensitivity detection of pressure and temperature stimulus. Particularly, the multifunctional flexible sensor exhibits a high response toward tiny pressure, demonstrating salient superiority in the continuous and reliable monitoring of human physiological information. Concerning temperature sensing, a good linear response for the temperatures ranging from 28 to 40 °C is achieved by the multifunctional flexible sensor and gives rise to be successfully applied to the non-contact real-time monitoring of human respiration signal. Finally, an array consisting of multifunctional flexible sensors further demonstrates its feasibility in perceiving and mapping the pressure and temperature information of contact objects. This work provides a feasible strategy for designing cotton-based sensing layers that can effectively resist liquid water penetration and allow water vapor transmission, and offers reasonable insight for constructing comfort and multifunctional wearable electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor

Show Author's information Feifei Yin1,§Yunjian Guo1,§Hao Li1Wenjing Yue1Chunwei Zhang1Duo Chen3Wei Geng4Yang Li1( )Song Gao1( )Guozhen Shen2( )
School of Information Science and Engineering, University of Jinan, Jinan 250022, China
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
Shandong Provincial Maternal and Child Health Care Hospital, Jinan 250022, China

§ Feifei Yin and Yunjian Guo contributed equally to this work.

Abstract

Developing a cotton fabric sensing layer with good waterproofness and breathability via a low-cost and eco-friendly method is increasingly important for the construction of comfortable and wearable electronic devices. Herein, a waterproof and breathable cotton fabric composite decorated by reduced graphene oxide (rGO) and carbon nanotube (CNT), Cotton/rGO/CNT, is reported by a facile solution infiltration method, and we adopt such Cotton/rGO/CNT composite to develop a layer-by-layer structured multifunctional flexible sensor, enabling the high-sensitivity detection of pressure and temperature stimulus. Particularly, the multifunctional flexible sensor exhibits a high response toward tiny pressure, demonstrating salient superiority in the continuous and reliable monitoring of human physiological information. Concerning temperature sensing, a good linear response for the temperatures ranging from 28 to 40 °C is achieved by the multifunctional flexible sensor and gives rise to be successfully applied to the non-contact real-time monitoring of human respiration signal. Finally, an array consisting of multifunctional flexible sensors further demonstrates its feasibility in perceiving and mapping the pressure and temperature information of contact objects. This work provides a feasible strategy for designing cotton-based sensing layers that can effectively resist liquid water penetration and allow water vapor transmission, and offers reasonable insight for constructing comfort and multifunctional wearable electronics.

Keywords: waterproof, pressure sensing, temperature sensing, breathable, multifunctional flexible sensor

References(48)

1

Xu, Y. D.; Zhao, G. G.; Zhu, L.; Fei, Q. H.; Zhang, Z.; Chen, Z. Y.; An, F. F.; Chen, Y. Y.; Ling, Y.; Guo, P. J. et al. Pencil-paper on-skin electronics. Proc. Natl. Acad. Sci. USA 2020, 117, 18292–18301.

2

Kim, E. H.; Han, H.; Yu, S.; Park, C.; Kim, G.; Jeong, B.; Lee, S. W.; Kim, J. S.; Lee, S.; Kim, J. et al. Interactive skin display with epidermal stimuli electrode. Adv. Sci. 2019, 6, 1802351.

3

Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 2018, 11, 1938–1955.

4

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

5

Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

6

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

7

Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.

8

Yu, Y.; Nassar, J.; Xu, C. H.; Min, J. H.; Yang, Y. R.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human–machine interfaces. Sci. Robot. 2020, 5, eaaz7946.

9

Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiNxO2−x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 2021, 131, 2101201.

10

Zhao, Y. S.; Zhang, B. Z.; Yao, B. W.; Qiu, Y.; Peng, Z. H.; Zhang, Y. C.; Alsaid, Y.; Frenkel, I.; Youssef, K.; Pei, Q. B. et al. Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 2020, 3, 1196–1210.

11

Kong, H. J.; Song, Z. Q.; Li, W. Y.; Bao, Y.; Qu, D. Y.; Ma, Y. M.; Liu, Z. B.; Wang, W.; Wang, Z. X.; Han, D. X. et al. Skin-inspired hair-epidermis-dermis hierarchical structures for electronic skin sensors with high sensitivity over a wide linear range. ACS Nano 2021, 15, 16218–16227.

12

Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N. E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033.

13

Beker, L.; Matsuhisa, N.; You, I.; Ruth, S. R. A.; Niu, S. M.; Foudeh, A.; Tok, J. B. H.; Chen, X. D.; Bao, Z. N. A bioinspired stretchable membrane-based compliance sensor. Proc. Natl. Acad. Sci. USA 2020, 117, 11314–11320.

14
Wei, X. ; Li, H. ; Yue, W. J. ; Gao, S. ; Chen, Z. X. ; Li, Y. ; Shen, G. Z. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter, in press,https://doi.org/10.1016/J.MATT.2022.02.016.
15

Tang, L.; Wu, S. J.; Xu, Y.; Cui, T.; Li, Y. H.; Wang, W.; Gong, L.; Tang, J. X. High toughness fully physical cross-linked double network organohydrogels for strain sensors with anti-freezing and anti-fatigue properties. Mater. Adv. 2021, 2, 6655–6664.

16

Wang, Z. W.; Cui, H. J.; Li, S.; Feng, X. W.; Aghassi-Hagmann, J.; Azizian, S.; Levkin, P. A. Facile approach to conductive polymer microelectrodes for flexible electronics. ACS Appl. Mater. Interfaces 2021, 13, 21661–21668.

17

Wang, T.; Zhang, Y.; Liu, Q. C.; Cheng, W.; Wang, X. R.; Pan, L. J.; Xu, B. X.; Xu, H. X. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater. 2018, 28, 1705551.

18

Pang, K.; Song, X.; Xu, Z.; Liu, X. T.; Liu, Y. J.; Zhong, L.; Peng, Y. X.; Wang, J. X.; Zhou, J. Z.; Meng, F. X. et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 2020, 6, eabd4045.

19
Xue, B. ; Sheng, H. ; Li, Y. Q. ; Li, L. ; Di, W. S. ; Xu, Z. Y. ; Ma, L. J. ; Wang, X. ; Jiang, H. T. ; Qin, M. et al. Stretchable and self-healable hydrogel artificial skin. Nat. Sci. Rev. , in press,https://doi.org/10.1093/nsr/nwab147.
20

Liao, M. H.; Wan, P. B.; Wen, J. R.; Gong, M.; Wu, X. X.; Wang, Y. G.; Shi, R.; Zhang, L. Q. Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 2017, 27, 1703852.

21

Fan, W. J.; He, Q.; Meng, K. Y.; Tan, X. L.; Zhou, Z. H.; Zhang, G. Q.; Yang, J.; Wang, Z. L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840.

22

Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.

23

Zheng, Y. J.; Li, Y. L.; Zhou, Y. J.; Dai, K.; Zheng, G. Q.; Zhang, B.; Liu, C. T.; Shen, C. Y. High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit. ACS Appl. Mater. Interfaces 2020, 12, 1474–1485.

24

Zhang, X. S.; Wang, X. F.; Lei, Z. W.; Wang, L. L.; Tian, M. W.; Zhu, S. F.; Xiao, H.; Tang, X. N.; Qu, L. J. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl. Mater. Interfaces 2020, 12, 14459–14467.

25

Liu, R.; Li, J. M.; Li, M.; Zhang, Q. H.; Shi, G. Y.; Li, Y. G.; Hou, C. Y.; Wang, H. Z. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 2020, 12, 46446–46454.

26

Xu, H. C.; Gao, L. B.; Wang, Y. J.; Cao, K.; Hu, X. K.; Wang, L.; Mu, M.; Liu, M.; Zhang, H. Y.; Wang, W. D. et al. Flexible waterproof piezoresistive pressure sensors with wide linear working range based on conductive fabrics. Nanomicro Lett. 2020, 12, 159.

27

Chen, L. M.; Lu, M. Y.; Yang, H. S.; Salas Avila, J. R.; Shi, B. W.; Ren, L.; Wei, G. W.; Liu, X. Q.; Yin, W. L. Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 2020, 14, 8191–8201.

28

Wang, L. C.; Zhang, C. G.; Jiao, X.; Yuan, Z. H. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res. 2019, 12, 1129–1137.

29

Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

30

Dudem, B.; Mule, A. R.; Patnam, H. R.; Yu, J. S. Wearable and durable triboelectric nanogenerators via polyaniline coated cotton textiles as a movement sensor and self-powered system. Nano Energy 2019, 55, 305–315.

31

Cataldi, P.; Ceseracciu, L.; Athanassiou, A.; Bayer, I. S. Healable cotton-graphene nanocomposite conductor for wearable electronics. ACS Appl. Mater. Interfaces 2017, 9, 13825–13830.

32

Wang, Y. G.; Chao, M. Y.; Wan, P. B.; Zhang, L. Q. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy 2020, 70, 104560.

33

Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213.

34

Li, Z. L.; Zhu, M. M.; Shen, J. L.; Qiu, Q.; Yu, J. Y.; Ding, B. All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 2020, 30, 1908411.

35

Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

36

Zhang, L.; He, J.; Liao, Y. S.; Zeng, X. T.; Qiu, N. X.; Liang, Y.; Xiao, P.; Chen, T. A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J. Mater. Chem. A 2019, 7, 26631–26640.

37

Niu, B.; Yang, S.; Hua, T.; Tian, X.; Koo, M. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Res. 2021, 14, 1043–1052.

38

Yu, X.; Zhao, Z. H.; Sun, D. H.; Ren, N.; Yu, J. H.; Yang, R. Q.; Liu, H. Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for efficient photocatalytic hydrogen generation. Appl. Catal. B:Environ. 2018, 227, 470–476.

39

Tian, X.; Zhang, S.; Ma, Y. Q.; Luo, Y. L.; Xu, F.; Chen, Y. S. Preparation and vapor-sensitive properties of hydroxyl-terminated polybutadiene polyurethane conductive polymer nanocomposites based on polyaniline-coated multiwalled carbon nanotubes. Nanotechnology 2020, 31, 195504.

40

Pecharromán, C.; Moya, J. S. Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold. Adv. Mater. 2000, 12, 294–297.

DOI
41

Qiu, J.; Guo, X. H.; Chu, R.; Wang, S. L.; Zeng, W.; Qu, L.; Zhao, Y. N.; Yan, F.; Xing, G. Z. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin. ACS Appl. Mater. Interfaces 2019, 11, 40716–40725.

42

Choi, J.; Kwon, D.; Kim, K.; Park, J.; Del Orbe, D.; Gu, J. M.; Ahn, J.; Cho, I.; Jeong, Y.; Oh, Y. et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors. ACS Appl. Mater. Interfaces 2020, 12, 1698–1706.

43

Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

44

O'Rourke, M. F. The arterial pulse in health and disease. Am. Heart J. 1971, 82, 687–702.

45

Guo, Y. J.; Gao, S.; Yue, W. J.; Zhang, C. W.; Li, Y. Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method. ACS Appl. Mater. Interfaces 2019, 11, 48594–48603.

46

Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

47

Chen, S. J.; Zhuo, B. G.; Guo, X. J. Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range. ACS Appl. Mater. Interfaces 2016, 8, 20364–20370.

48

Lin, Q. P.; Huang, J.; Yang, J. L.; Huang, Y.; Zhang, Y. F.; Wang, Y. J.; Zhang, J. M.; Wang, Y.; Yuan, L. L.; Cai, M. K. et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring. Adv. Healthc. Mater. 2020, 9, e2001023.

Video
12274_2022_4440_MOESM2_ESM.mp4
12274_2022_4440_MOESM3_ESM.mp4
File
12274_2022_4440_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 February 2022
Revised: 06 April 2022
Accepted: 15 April 2022
Published: 31 May 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62174068, 61805101, 62005095, 61888102, and 62104080), Shandong Provincial Natural Science Foundation of China (Nos. ZR2019BF013 and ZR2020QF105), and Rizhao City Key Research and Development Program under Grant (No. 2021ZDYF010102).

Return