Journal Home > Volume 15 , Issue 9

The direct use of naturally occurring, small molecular ingredients in bioinspired sunscreens has raised several concerns due to the instability, photocytotoxicity, and potential blood toxicity of those ingredients. In this work, we have employed natural ultraviolet (UV)-blocking molecule caffeic acid phenethyl ester (CAPE) from propolis to prepare poly(CAPE) nanoparticles (NPs) as the main bioactive ingredient to fabricate propolis-inspired hydrogel sunscreens. Compared with small molecular CAPE, poly(CAPE) NPs exhibited better dispersion and stability in water, as well as lower physiological toxicity and skin permeability. And the resulting composite hydrogels demonstrated promising properties including water-resistant whereas can be easily erased by warm water as well as safety when interacting with skin. More importantly, the hydrogel sunscreens showed excellent UV protection properties both in vitro and in vivo, and the positive effects in maintaining skin barrier functions. This work provides new strategies towards the facile construction of nature-inspired robust sunscreens in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Propolis inspired sunscreens for efficient UV-protection and skin barrier maintenance

Show Author's information Yu Fu1,§Ruoyu Wan2,§Lei Yang1Lidan Xiong2,3Junfei Hu1Jie Tang2,3Hailun He2Zhipeng Gu1( ) Li Li2,3( )Yiwen Li1,3( )
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
Cosmetics Safety and Efficacy Evaluation Center, Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu 610041, China

§ Yu Fu and Ruoyu Wan contributed equally to this work.

Abstract

The direct use of naturally occurring, small molecular ingredients in bioinspired sunscreens has raised several concerns due to the instability, photocytotoxicity, and potential blood toxicity of those ingredients. In this work, we have employed natural ultraviolet (UV)-blocking molecule caffeic acid phenethyl ester (CAPE) from propolis to prepare poly(CAPE) nanoparticles (NPs) as the main bioactive ingredient to fabricate propolis-inspired hydrogel sunscreens. Compared with small molecular CAPE, poly(CAPE) NPs exhibited better dispersion and stability in water, as well as lower physiological toxicity and skin permeability. And the resulting composite hydrogels demonstrated promising properties including water-resistant whereas can be easily erased by warm water as well as safety when interacting with skin. More importantly, the hydrogel sunscreens showed excellent UV protection properties both in vitro and in vivo, and the positive effects in maintaining skin barrier functions. This work provides new strategies towards the facile construction of nature-inspired robust sunscreens in the future.

Keywords: bioinspired, composite hydrogel, sunscreen, ultraviolet protection

References(58)

1

Corbyn, Z. Prevention: Lessons from a sunburnt country. Nature 2014, 515, S114–S116.

2

Zayat, M.; Garcia-Parejo, P.; Levy, D. Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chem. Soc. Rev. 2007, 36, 1270–1281.

3

Biba, E. Protection: The sunscreen pill. Nature 2014, 515, S124–S125.

4

Bernard, J. J.; Gallo, R. L.; Krutmann, J. Photoimmunology: How ultraviolet radiation affects the immune system. Nat. Rev. Immunol. 2019, 19, 688–701.

5

Kapp, F. G.; Perlin, J. R.; Hagedorn, E. J.; Gansner, J. M.; Schwarz, D. E.; O’Connell, L. A.; Johnson, N. S.; Amemiya, C.; Fisher, D. E.; Wölfle, U. et al. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature 2018, 558, 445–448.

6

Jablonski, N. G.; Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA 2010, 107, 8962–8968.

7

Lin, J. Y.; Fisher, D. E. Melanocyte biology and skin pigmentation. Nature 2007, 445, 843–850.

8

Thompson, A. E. Suntan and sunburn. JAMA 2015, 314, 638.

9

Hu, J. F.; Yang, L.; Yang, P.; Jiang, S. H.; Liu, X. H.; Li, Y. W. Polydopamine free radical scavengers. Biomater. Sci. 2020, 8, 4940–4950.

10

Wang, H.; Wang, C. P.; Zou, Y.; Hu, J. J.; Li, Y. W.; Cheng, Y. Y. Natural polyphenols in drug delivery systems: Current status and future challenges. Giant 2020, 3, 100022.

11

Zou, Y.; Chen, X. F.; Yang, P.; Liang, G. J.; Yang, Y.; Gu, Z. P.; Li, Y. W. Regulating the absorption spectrum of polydopamine. Sci. Adv. 2020, 6, eabb4696.

12

Wang, T. Y.; Fan, Q. Q.; Hong, J. X.; Chen, Z.; Zhou, X. J.; Zhang, J. H.; Dai, Y. Q.; Jiang, H.; Gu, Z. P.; Cheng, Y. Y. et al. Therapeutic nanoparticles from grape seed for modulating oxidative stress. Small 2021, 17, 2102485.

13

Yang, L.; Wang, C. P.; Li, L.; Zhu, F.; Ren, X. C.; Huang, Q.; Cheng, Y. Y.; Li, Y. W. Bioinspired integration of naturally occurring molecules towards universal and smart antibacterial coatings. Adv. Funct. Mater. 2021, 32, 2108749.

14

Qian, Y.; Zhong, X. W.; Li, Y.; Qiu, X. Q. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Ind. Crops Prod. 2017, 101, 54–60.

15

Chen, K.; Lei, L.; Qian, Y.; Xie, A. L.; Qiu, X. Q. Biomass lignin stabilized anti-UV high internal phase emulsions: Preparation, rheology, and application as carrier materials. ACS Sustainable Chem. Eng. 2019, 7, 810–818.

16

Wang, B.; Sun, D.; Wang, H. M.; Yuan, T. Q.; Sun, R. C. Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustainable Chem. Eng. 2019, 7, 2658–2666.

17

Wang, H.; Lin, W. S.; Qiu, X. Q.; Fu, F. B.; Zhong, R. S.; Liu, W. F.; Yang, D. J. In situ synthesis of flowerlike lignin/ZnO composite with excellent UV-absorption properties and its application in polyurethane. ACS Sustainable Chem. Eng. 2018, 6, 3696–3705.

18

Zhang, H.; Liu, X. X.; Fu, S. Y.; Chen, Y. C. Fabrication of light-colored lignin microspheres for developing natural sunscreens with favorable UV absorbability and staining resistance. Ind. Eng. Chem. Res. 2019, 58, 13858–13867.

19

Chan, M. H.; Pan, Y. T.; Lee, I. J.; Chen, C. W.; Chan, Y. C.; Hsiao, M.; Wang, F.; Sun, L. D.; Chen, X. Y.; Liu, R. S. Minimizing the heat effect of photodynamic therapy based on inorganic nanocomposites mediated by 808 nm near-infrared light. Small 2017, 13, 1700038.

20

Hayden, D. R.; Kibbelaar, H. V. M.; Imhof, A.; Velikov, K. P. Fully-biobased UV-absorbing nanoparticles from ethyl cellulose and zein for environmentally friendly photoprotection. RSC Adv. 2018, 8, 25104–25111.

21

Dong, Y.; Chen, S. S.; Zhou, S. L.; Hou, S. L.; Lu, Q. H. Perspectives on the next generation of sunscreen: Safe, broadband, and long-term photostability. ACS Materials Lett. 2019, 1, 336–343.

22

Wang, R.; Wang, X. X.; Zhan, Y. J.; Xu, Z.; Xu, Z. Q.; Feng, X. H.; Li, S.; Xu, H. A dual network hydrogel sunscreen based on poly-γ-glutamic acid/tannic acid demonstrates excellent anti-UV, self-recovery, and skin-integration capacities. ACS Appl. Mater. Interfaces 2019, 11, 37502–37512.

23

Xiong, L.; Zhao, M. Y.; Fan, Y.; Wang, S. F.; Yang, Y. L.; Li, X. M.; Zhao, D. Y.; Zhang, F. Manganese oxide nanoclusters for skin photoprotection. ACS Appl. Bio. Mater. 2019, 2, 3974–3982.

24

Fan, Q. Q.; Yang, Z.; Li, Y. H.; Cheng, Y. Y.; Li, Y. W. Polycatechol mediated small interfering RNA delivery for the treatment of ulcerative colitis. Adv. Funct. Mater. 2021, 31, 2101646.

25

Yang, P.; Zhang, J. H.; Xiang, S. Y.; Jin, Z. K.; Zhu, F.; Wang, T. Y.; Duan, G. G.; Liu, X. H.; Gu, Z. P.; Li, Y. W. Green nanoparticle scavengers against oxidative stress. ACS Appl. Mater. Interfaces 2021, 13, 39126–39134.

26

Yang, P.; Zhou, X.; Zhang, J. H.; Zhong, J.; Zhu, F.; Liu, X. H.; Gu, Z. P.; Li, Y. W. Natural polyphenol fluorescent polymer dots. Green Chem. 2021, 23, 1834–1839.

27

Yang, P.; Zhu, F.; Zhang, Z. B.; Cheng, Y. Y.; Wang, Z.; Li, Y. W. Stimuli-responsive polydopamine-based smart materials. Chem. Soc. Rev. 2021, 50, 8319–8343.

28

Yang, Z.; Guo, W. C.; Yang, P.; Hu, J. F.; Duan, G. G.; Liu, X. H.; Gu, Z. P.; Li, Y. W. Metal-phenolic network green flame retardants. Polymer 2021, 221, 123627.

29

Zhang, X. Q.; Li, Z.; Yang, P.; Duan, G. G.; Liu, X. H.; Gu, Z. P.; Li, Y. W. Polyphenol scaffolds in tissue engineering. Mater. Horiz. 2021, 8, 145–167.

30

Stavros, V. G. Photochemistry: A bright future for sunscreens. Nat. Chem. 2014, 6, 955–956.

31

Baker, L. A.; Marchetti, B.; Karsili, T. N. V.; Stavros, V. G.; Ashfold, M. N. R. Photoprotection: Extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chem. Soc. Rev. 2017, 46, 3770–3791.

32

Huang, Y. R.; Li, Y. W.; Hu, Z. Y.; Yue, X. J.; Proetto, M. T.; Jones, Y.; Gianneschi, N. C. Mimicking melanosomes: Polydopamine nanoparticles as artificial microparasols. ACS Cent. Sci. 2017, 3, 564–569.

33

Losantos, R.; Funes-Ardoiz, I.; Aguilera, J.; Herrera-Ceballos, E.; García-Iriepa, C.; Campos, P. J.; Sampedro, D. Rational design and synthesis of efficient sunscreens to boost the solar protection factor. Angew. Chem., Int. Ed. 2017, 56, 2632–2635.

34

Matta, M. K.; Zusterzeel, R.; Pilli, N. R.; Patel, V.; Volpe, D. A.; Florian, J.; Oh, L.; Bashaw, E.; Zineh, I.; Sanabria, C. et al. Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: A randomized clinical trial. JAMA 2019, 321, 2082–2091.

35

Anjum, S. I.; Ullah, A.; Khan, K. A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M. A.; Tahir, M.; Ansari, M. J.; Ghramh, H. A. et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703.

36

Król, W.; Bankova, V.; Sforcin, J. M.; Szliszka, E.; Czuba, Z.; Kuropatnicki, A. K. Propolis: Properties, application, and its potential. Evid. Based Complement. Alternat. Med. 2013, 2013, 807578.

37

Pobiega, K.; Kraśniewska, K.; Przybył, J. L.; Bączek, K.; Żubernik, J.; Witrowa-Rajchert, D.; Gniewosz, M. Growth biocontrol of foodborne pathogens and spoilage microorganisms of food by polish propolis extracts. Molecules 2019, 24, 2965.

38
Yang, L.; Li, L.; Li, H. T.; Wang, T. Y.; Ren, X. C.; Cheng, Y. Y.; Li, Y. W.; Huang, Q. Layer-by-layer assembled smart antibacterial coatings via mussel-inspired polymerization and dynamic covalent chemistry. Adv. Healthc. Mater., in press, https://doi.org/10.1002/adhm.202200112.
DOI
39

Wei, Q.; Su, Y. Z.; Xin, H.; Zhang, L. N.; Ding, J. X.; Chen, X. S. Immunologically effective biomaterials. ACS Appl. Mater. Interfaces 2021, 13, 56719–56724.

40

Li, R. T.; Liu, K.; Huang, X.; Li, D.; Ding, J. X.; Liu, B.; Chen, X. S. Bioactive materials promote wound healing through modulation of cell behaviors. Adv. Sci. 2022, 9, 2105152.

41
Zhu, F.; Zhong, J.; Hu, J. F.; Yang, P.; Zhang, J. H.; Zhang, M. H.; Li, Y. W.; Gu, Z. P. Carrier-free deferoxamine nanoparticles against iron overload in brain. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202101696.
DOI
42

Ou, K. Y.; Xu, X. J.; Guan, S. Y.; Zhang, R. H.; Zhang, X. Y.; Kang, Y.; Wu, J. Nanodrug carrier based on poly(ursolic acid) with self-anticancer activity against colorectal cancer. Adv. Funct. Mater. 2020, 30, 1907857.

43

You, X. R.; Wang, L. Y.; Wang, L.; Wu, J. Rebirth of aspirin synthesis by‐product: Prickly poly(salicylic acid) nanoparticles as self‐anticancer drug carrier. Adv. Funct. Mater. 2021, 31, 2100805.

44

Zheng, Y. H.; You, X. R.; Guan, S. Y.; Huang, J.; Wang, L. Y.; Zhang, J. Y.; Wu, J. Poly(ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater. 2019, 29, 1808646.

45

Zhao, Y.; Zhang, Z. Z.; Pan, Z.; Liu, Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021, 1, 20210089.

46

Hu, X. H.; Li, Z.; Yang, Z.; Zhu, F.; Zhao, W. F.; Duan, G. G.; Li, Y. W. Fabrication of functional polycatechol nanoparticles. ACS Macro Lett. 2022, 11, 251–256.

47

Chen, Y. E.; Fischbach, M. A.; Belkaid, Y. Skin microbiota-host interactions. Nature 2018, 553, 427–436.

48

Berkey, C.; Oguchi, N.; Miyazawa, K.; Dauskardt, R. Role of sunscreen formulation and photostability to protect the biomechanical barrier function of skin. Biochem. Biophys. Rep. 2019, 19, 100657.

49

Rinaldi, A. O.; Morita, H.; Wawrzyniak, P.; Dreher, A.; Grant, S.; Svedenhag, P.; Akdis, C. A. Direct assessment of skin epithelial barrier by electrical impedance spectroscopy. Allergy 2019, 74, 1934–1944.

50

Xiang, S. Y.; Yang, P.; Guo, H.; Zhang, S.; Zhang, X. K.; Zhu, F.; Li, Y. W. Green tea makes polyphenol nanoparticles with radical-scavenging activities. Macromol. Rapid Commun. 2017, 38, 1700446.

51

Wang, C. P.; Wang, D.; Dai, T. J.; Xu, P.; Wu, P. L.; Zou, Y.; Yang, P.; Hu, J. J.; Li, Y. W.; Cheng, Y. Y. Skin pigmentation-inspired polydopamine sunscreens. Adv. Funct. Mater. 2018, 28, 1802127.

52

Deng, Y.; Ediriwickrema, A.; Yang, F.; Lewis, J.; Girardi, M.; Saltzman, W. M. A sunblock based on bioadhesive nanoparticles. Nat. Mater. 2015, 14, 1278–1285.

53

Downs, C. A.; DiNardo, J. C.; Stien, D.; Rodrigues, A. M. S.; Lebaron, P. Benzophenone accumulates over time from the degradation of octocrylene in commercial sunscreen products. Chem. Res. Toxicol. 2021, 34, 1046–1054.

54

Cadet, J.; Douki, T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci. 2018, 17, 1816–1841.

55

Grayson, S.; Elias, P. M. Isolation and lipid biochemical characterization of stratum corneum membrane complexes: Implications for the cutaneous permeability barrier. J. Invest. Dermatol. 1982, 78, 128–135.

56

Quiroz, F. G.; Fiore, V. F.; Levorse, J.; Polak, L.; Wong, E.; Pasolli, H. A.; Fuchs, E. Liquid-liquid phase separation drives skin barrier formation. Science 2020, 367, eaax9554.

57

Sandilands, A.; Sutherland, C.; Irvine, A. D.; McLean, W. H. I. Filaggrin in the frontline: Role in skin barrier function and disease. J. Cell Sci. 2009, 122, 1285–1294.

58

Biniek, K.; Levi, K.; Dauskardt, R. H. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. USA 2012, 109, 17111–17116.

File
12274_2022_4434_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 March 2022
Revised: 13 April 2022
Accepted: 14 April 2022
Published: 19 May 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52173132 and 81673084), 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University, the Research Fund from Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University (No. KJS2116), and the Fundamental Research Funds for Central Universities.

Return