Journal Home > Volume 15 , Issue 9

Polyphenols, as widely existing natural bioactive products, provide a vast array of advanced biomedical applications attributing to their potential health benefits that linked to antioxidant, anti-inflammatory, immunoregulatory, neuroprotective, cardioprotective function, etc. The polyphenol compounds could dynamically interact and bind with diverse species (such as polymers, metal ions, biomacromolecules, etc.) via multiple interactions, including hydrogen bond, hydrophobic, π–π, and cation–π interactions due to their unique chemical polyphenolic structures, providing far-ranging strategies for designing of polyphenol-based vehicles. Natural polyphenols emerged as multifaceted players, acting either as inherent therapeutics delivered to combat diverse diseases or as pivotal assemblies of drug delivery vehicles. In this review, we focused on the rational design and application of metal-phenolic network (MPN) based delivery systems, polyphenol-based coating films, polyphenol hollow capsules, polyphenol-incorporated hydrogels, and polymer-polyphenol-based nanoparticles (NPs) in various diseases therapeutic, including cancer, infection, cardiovascular disease, neurodegenerative disease, etc. Additionally. the versatility and mechanisms of polyphenols in the field of biomacromolecules (e.g., protein, peptide, nucleic acid, etc.) delivery and cell therapy have been comprehensively summarized. Going through the literature review, the remaining challenges of polyphenol-containing nanosystems need to be addressed are involved, including long-term stability, biosafety in vivo, feasibility of scale-up, etc., which may enlighten the further developments of this field. This review provides perspectives in utilizing natural polyphenol-based biomaterials to rationally design next generation versatile drug delivery system in the field of biomedicine, which eventually benefits public health.


menu
Abstract
Full text
Outline
About this article

Innovations and challenges of polyphenol-based smart drug delivery systems

Show Author's information Yanan Wang1,§Jingwen Zhang1,§Yi Zhao2Minju Pu1Xinyu Song1Liangmin Yu1( )Xuefeng Yan1Jun Wu2( )Zhiyu He1( )
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China

§ Yanan Wang and Jingwen Zhang contributed equally to this work.

Abstract

Polyphenols, as widely existing natural bioactive products, provide a vast array of advanced biomedical applications attributing to their potential health benefits that linked to antioxidant, anti-inflammatory, immunoregulatory, neuroprotective, cardioprotective function, etc. The polyphenol compounds could dynamically interact and bind with diverse species (such as polymers, metal ions, biomacromolecules, etc.) via multiple interactions, including hydrogen bond, hydrophobic, π–π, and cation–π interactions due to their unique chemical polyphenolic structures, providing far-ranging strategies for designing of polyphenol-based vehicles. Natural polyphenols emerged as multifaceted players, acting either as inherent therapeutics delivered to combat diverse diseases or as pivotal assemblies of drug delivery vehicles. In this review, we focused on the rational design and application of metal-phenolic network (MPN) based delivery systems, polyphenol-based coating films, polyphenol hollow capsules, polyphenol-incorporated hydrogels, and polymer-polyphenol-based nanoparticles (NPs) in various diseases therapeutic, including cancer, infection, cardiovascular disease, neurodegenerative disease, etc. Additionally. the versatility and mechanisms of polyphenols in the field of biomacromolecules (e.g., protein, peptide, nucleic acid, etc.) delivery and cell therapy have been comprehensively summarized. Going through the literature review, the remaining challenges of polyphenol-containing nanosystems need to be addressed are involved, including long-term stability, biosafety in vivo, feasibility of scale-up, etc., which may enlighten the further developments of this field. This review provides perspectives in utilizing natural polyphenol-based biomaterials to rationally design next generation versatile drug delivery system in the field of biomedicine, which eventually benefits public health.

Keywords: metal-phenolic network, polymer-phenolic nanoparticles, metal-phenolic coatings, metal-phenolic hollow capsules, polyphenol–protein interactions

References(204)

1
Bhatla, S. C.; Lal, M. A. Plant Physiology, Development and Metabolism; Springer: Singapore, 2018; pp 1099–1166.https://doi.org/10.1007/978-981-13-2023-1_33
DOI
2

Zhang, L.; Ho, C. T.; Zhou, J.; Santos, J. S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495.

3

Luca, S. V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A. C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659.

4

Hoseyni, S. Z.; Jafari, S. M.; Tabarestani, H. S.; Ghorbani, M.; Assadpour, E.; Sabaghi, M. Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol. Carbohydr. Polym. 2020, 235, 115979.

5

Shim, G.; Ko, S.; Park, J. Y.; Suh, J. H.; Le, Q. V.; Kim, D.; Kim, Y. B.; Im, G. H.; Kim, H. N.; Choe, Y. S. et al. Tannic acid-functionalized boron nitride nanosheets for theranostics. J. Controlled Release 2020, 327, 616–626.

6

Kharat, P.; Sarkar, P.; Mouliganesh, S.; Tiwary, V.; Priya, V. B. R.; Sree, N. Y.; Annapoorna, H. V.; Saikia, D. K.; Mahanta, K.; Thirumurugan, K. Ellagic acid prolongs the lifespan of Drosophila melanogaster. GeroScience 2020, 42, 271–285.

7

Cao, H. P.; Sethumadhavan, K.; Cao, F. P.; Wang, T. T. Y. Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci. Rep. 2021, 11, 5922.

8

Zhou, Z. D.; Xie, S. P.; Saw, W. T.; Ho, P. G. H.; Wang, H. Y.; Zhou, L.; Zhao, Y.; Tan, E. K. The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in parkinson’s disease (PD). Cells 2019, 8, 911.

9

do Valle, I. F.; Roweth, H. G.; Malloy, M. W.; Moco, S.; Barron, D.; Battinelli, E.; Loscalzo, J.; Barabási, A. L. Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. Nat. Food 2021, 2, 143–155.

10

Sharma, A.; Vaghasiya, K.; Ray, E.; Gupta, P.; Gupta, U. D.; Singh, A. K.; Verma, R. K. Targeted pulmonary delivery of the green tea polyphenol epigallocatechin gallate controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and suppressing bacterial burden. ACS Biomater. Sci. Eng. 2020, 6, 4126–4140.

11

Mirza-Aghazadeh-Attari, M.; Ekrami, E. M.; Aghdas, S. A. M.; Mihanfar, A.; Hallaj, S.; Yousefi, B.; Safa, A.; Majidinia, M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci. 2020, 255, 117481.

12

Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Jimenez, M. T. B.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T. et al. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid. Med. Cell. Longev. 2019, 2019, 7092151.

13

Ornatowski, W.; Lu, Q.; Yegambaram, M.; Garcia, A. E.; Zemskov, E. A.; Maltepe, E.; Fineman, J. R.; Wang, T.; Black, S. M. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020, 36, 101679.

14

Forman, H. J.; Zhang, H. Q. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discovery 2021, 20, 689–709.

15

Yan, Z. M.; Zhong, Y. Z.; Duan, Y. H.; Chen, Q. H.; Li, F. N. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123.

16

Zhang, J. H.; Fu, Y.; Yang, P.; Liu, X. H.; Li, Y. W.; Gu, Z. P. ROS scavenging biopolymers for anti-inflammatory diseases: Classification and formulation. Adv. Mater. Inter. 2020, 7, 2000632.

17

Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular targets of epigallocatechin-gallate (EGCG): A special focus on signal transduction and cancer. Nutrients 2018, 10, 1936.

18

Yang, L. Q.; Zhang, W. Q.; Chopra, S.; Kaur, D.; Wang, H. B.; Li, M.; Chen, P. P.; Zhang, W. The epigenetic modification of epigallocatechin gallate (EGCG) on cancer. Curr. Drug Targets 2020, 21, 1099–1104.

19

Campbell, N. K.; Fitzgerald, H. K.; Fletcher, J. M.; Dunne, A. Plant-derived polyphenols modulate human dendritic cell metabolism and immune function via AMPK-dependent induction of heme oxygenase-1. Front. Immunol. 2019, 10, 345.

20

Magrone, T.; Magrone, M.; Russo, M. A.; Jirillo, E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies. Antioxidants 2020, 9, 35.

21

Zhou, J. J.; Lin, Z. X.; Ju, Y.; Rahim, A.; Richardson, J. J.; Caruso, F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 2020, 53, 1269–1278.

22

Liu, H.; Zhang, X. Y.; Xu, Z. P.; Wang, Y. M.; Ke, Y. H.; Jiang, Z. B.; Yuan, Z.; Li, H. Role of polyphenols in plant-mediated synthesis of gold nanoparticles: Identification of active components and their functional mechanism. Nanotechnology 2020, 31, 415601.

23

Lakey-Beitia, J.; Burillo, A. M.; La Penna, G.; Hegde, M. L.; Rao, K. S. Polyphenols as potential metal chelation compounds against Alzheimer’s disease. J. Alzheimer's Dis. 2021, 82, S335–S357.

24

Shen, Y. T.; Li, S. K.; Qi, R. L.; Wu, C. X.; Yang, M.; Wang, J.; Cai, Z. J.; Liu, K. A.; Yue, J. L.; Guan, B. et al. Assembly of hexagonal column interpenetrated spheres from plant polyphenol/cationic surfactants and their application as antimicrobial molecular banks. Angew. Chem., Int. Ed. 2022, 61, e202110938.

25

Han, Y. Y.; Lin, Z. X.; Zhou, J. J.; Yun, G.; Guo, R.; Richardson, J. J.; Caruso, F. Polyphenol-mediated assembly of proteins for engineering functional materials. Angew. Chem., Int. Ed. 2020, 59, 15618–15625.

26

Li, C. H.; Dai, T. T.; Chen, J.; Li, X.; Li, T.; Liu, C. M.; McClements, D. J. Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chem. 2021, 339, 128145.

27

Adrar, N. S.; Madani, K.; Adrar, S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PharmaNutrition 2019, 7, 100142.

28

Lin, D. R.; Xiao, L. J.; Qin, W.; Loy, D. A.; Wu, Z. J.; Chen, H.; Zhang, Q. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr. Polym. 2022, 281, 119080.

29

Schmidt, M. P.; Siciliano, S. D.; Peak, D. The role of monodentate tetrahedral borate complexes in boric acid binding to a soil organic matter analogue. Chemosphere 2021, 276, 130150.

30

Prossnitz, A. N.; Pun, S. H. Modulating boronic ester stability in block copolymer micelles via the neighbor effect of copolymerized tertiary amines for controlled release of polyphenolic drugs. ACS Macro Lett. 2022, 11, 276–283.

31

Geng, H. M.; Dai, Q.; Sun, H. F.; Zhuang, L. P.; Song, A. X.; Caruso, F.; Hao, J. C.; Cui, J. W. Injectable and sprayable polyphenol-based hydrogels for controlling hemostasis. ACS Appl. Bio Mater. 2020, 3, 1258–1266.

32

Guo, J. L.; Suma, T.; Richardson, J. J.; Ejima, H. Modular assembly of biomaterials using polyphenols as building blocks. ACS Biomater. Sci. Eng. 2019, 5, 5578–5596.

33

Centurion, F.; Namivandi-Zangeneh, R.; Flores, N.; Tajik, M.; Merhebi, S.; Abbasi, R.; Mayyas, M.; Allioux, F. M.; Tang, J. B.; Donald, W. A. et al. Liquid metal-triggered assembly of phenolic nanocoatings with antioxidant and antibacterial properties. ACS Appl. Nano Mater. 2021, 4, 2987–2998.

34

Tang, H. Y.; Fang, Z. X.; Ng, K. Dietary fiber-based colon-targeted delivery systems for polyphenols. Trends Food Sci. Technol. 2020, 100, 333–348.

35

Bhangu, S. K.; Charchar, P.; Noble, B. B.; Kim, C. J.; Pan, S.; Yarovsky, I.; Cavalieri, F.; Caruso, F. Origins of structural elasticity in metal−phenolic networks probed by super-resolution microscopy and multiscale simulations. ACS Nano 2021, 16, 98–110.

36

Gao, X. H.; Wang, Q.; Ren, L. L.; Gong, P.; He, M.; Tian, W. D.; Zhao, W. F. Metal-phenolic networks as a novel filler to advance multi-functional immunomodulatory biocomposites. Chem. Eng. J. 2021, 426, 131825.

37

Liu, P.; Shi, X. Y.; Zhong, S. H.; Peng, Y.; Qi, Y.; Ding, J. S.; Zhou, W. H. Metal-phenolic networks for cancer theranostics. Biomater. Sci. 2021, 9, 2825–2849.

38

Zhang, B.; Yao, R. J.; Li, L. H.; Wang, Y. N.; Luo, R. F.; Yang, L.; Wang, Y. B. Green tea polyphenol induced Mg2+-rich multilayer conversion coating: Toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications. ACS Appl. Mater. Interfaces 2019, 11, 41165–41177.

39

Chen, S.; Fan, J. X.; Zheng, D. W.; Liu, F.; Zeng, X.; Yan, G. P.; Zhang, X. Z. A multi-functional drug delivery system based on polyphenols for efficient tumor inhibition and metastasis prevention. Biomater. Sci. 2020, 8, 702–711.

40

Nagesh, P. K. B.; Chowdhury, P.; Hatami, E.; Kumari, S.; Kashyap, V. K.; Tripathi, M. K.; Wagh, S.; Meibohm, B.; Chauhan, S. C.; Jaggi, M. et al. Cross-linked polyphenol-based drug nano-self-assemblies engineered to blockade prostate cancer senescence. ACS Appl. Mater. Interfaces 2019, 11, 38537–38554.

41

Qin, Y.; Wang, J. P.; Qiu, C.; Hu, Y.; Xu, X. M.; Jin, Z. Y. Self-assembly of metal-phenolic networks as functional coatings for preparation of antioxidant, antimicrobial, and pH-sensitive-modified starch nanoparticles. ACS Sustainable Chem. Eng. 2019, 7, 17379–17389.

42

Zhao, G. Z.; Wu, H. H.; Feng, R. L.; Wang, D. D.; Xu, P. P.; Jiang, P.; Yang, K.; Wang, H. B.; Guo, Z.; Chen, Q. W. Novel metal polyphenol framework for MR imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 3295–3304.

43

Liu, T.; Zhang, M. K.; Liu, W. L.; Zeng, X.; Song, X. L.; Yang, X. Q.; Zhang, X. Z.; Feng, J. Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 2018, 12, 3917–3927.

44

Yan, G. H.; Chen, G. F.; Peng, Z. Q.; Shen, Z. L.; Tang, X.; Sun, Y.; Zeng, X. H.; Lin, L. The cross-linking mechanism and applications of catechol-metal polymer materials. Adv. Mater. Interfaces 2021, 8, 2100239.

45

Zhao, Y. Y.; Zhang, Y. Q.; Li, F. R.; Bai, Y. P.; Pan, Y. L.; Ma, J.; Zhang, S.; Shao, L. Ultra-robust superwetting hierarchical membranes constructed by coordination complex networks for oily water treatment. J. Membr. Sci. 2021, 627, 119234.

46

Wang, Q.; Xu, Y.; Xue, R.; Fan, J. M.; Yu, H.; Guan, J. W.; Wang, H. Z.; Li, M.; Yu, W.; Xie, Z. Y. et al. All-in-one theranostic platform based on hollow microcapsules for intragastric-targeting antiulcer drug delivery, CT imaging, and synergistically healing gastric ulcer. Small 2022, 18, 2104660.

47

Chowdhury, P.; Nagesh, P. K. B.; Hatami, E.; Wagh, S.; Dan, N.; Tripathi, M. K.; Khan, S.; Hafeez, B. B.; Meibohm, B.; Chauhan, S. C. et al. Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. J. Colloid Interface Sci. 2019, 535, 133–148.

48

Fan, J. X.; Zheng, D. W.; Mei, W. W.; Chen, S.; Chen, S. Y.; Cheng, S. X.; Zhang, X. Z. A metal-polyphenol network coated nanotheranostic system for metastatic tumor treatments. Small 2017, 13, 1702714.

49

Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.

50

Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.

51

Wojnilowicz, M.; Glab, A.; Bertucci, A.; Caruso, F.; Cavalieri, F. Super-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic release of small interfering RNA. ACS Nano 2019, 13, 187–202.

52

Dong, Z. L.; Hao, Y.; Li, Q. G.; Yang, Z. J.; Zhu, Y. J.; Liu, Z.; Feng, L. Z. Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Res. 2020, 13, 3057–3067.

53

Chen, J. Q.; Pan, S. J.; Zhou, J. J.; Seidel, R.; Beyer, S.; Lin, Z. X.; Richardson, J. J.; Caruso, F. Metal-phenolic networks as tunable buffering systems. Chem. Mater. 2021, 33, 2557–2566.

54

Chen, J. Q.; Li, J. H.; Zhou, J. J.; Lin, Z. X.; Cavalieri, F.; Czuba-Wojnilowicz, E.; Hu, Y. J.; Glab, A.; Ju, Y.; Richardson, J. J. et al. Metal-phenolic coatings as a platform to trigger endosomal escape of nanoparticles. ACS Nano 2019, 13, 11653–11664.

55

Shin, M.; Lee, H. A.; Lee, M.; Shin, Y.; Song, J. J.; Kang, S. W.; Nam, D. H.; Jeon, E. J.; Cho, M.; Do, M. et al. Targeting protein and peptide therapeutics to the heart via tannic acid modification. Nat. Biomed. Eng. 2018, 2, 304–317.

56

Torrieri, G.; Ferreira, M. P. A.; Shahbazi, M. A.; Talman, V.; Karhu, S. T.; Pohjolainen, L.; Carvalho, C.; Pinto, J. F.; Hirvonen, J.; Ruskoaho, H. et al. In vitro evaluation of the therapeutic effects of dual-drug loaded spermine-acetalated dextran nanoparticles coated with tannic acid for cardiac applications. Adv. Funct. Mater. 2022, 32, 2109032.

57

Qin, J.; Liang, G. H.; Cheng, D.; Liu, Y. N.; Cheng, X. R.; Yang, P. K.; Wu, N.; Zhao, Y. X.; Wei, J. Controllable synthesis of iron-polyphenol colloidal nanoparticles with composition-dependent photothermal performance. J. Colloid Interface Sci. 2021, 593, 172–181.

58

Zhang, C.; Hu, D. F.; Xu, J. W.; Ma, M. Q.; Xing, H. B.; Yao, K.; Ji, J.; Xu, Z. K. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 2018, 12, 12347–12356.

59

Zeng, J. F.; Cheng, M.; Wang, Y.; Wen, L.; Chen, L.; Li, Z.; Wu, Y. Y.; Gao, M. Y.; Chai, Z. F. pH-responsive Fe(III)-gallic acid nanoparticles for in vivo photoacoustic-imaging-guided photothermal therapy. Adv. Healthc. Mater. 2016, 5, 772–780.

60

Yang, B.; Zhou, S.; Zeng, J.; Zhang, L. P.; Zhang, R. H.; Liang, K.; Xie, L.; Shao, B.; Song, S. L.; Huang, G. et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019.

61

Xiang, J. J.; Li, Y. W.; Zhang, Y. F.; Wang, G. W.; Xu, H. X.; Zhou, Z. X.; Tang, J. B.; Shen, Y. Q. Polyphenol-cisplatin complexation forming core−shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. J. Controlled Release 2021, 330, 992–1003.

62

Dai, Y. L.; Yang, Z.; Cheng, S. Y.; Wang, Z. L.; Zhang, R. L.; Zhu, G. Z.; Wang, Z. T.; Yung, B. C.; Tian, R.; Jacobson, O. et al. Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Adv. Mater. 2018, 30, 1704877.

63

Zhang, J.; Yang, J.; Zuo, T. T.; Ma, S. Y.; Xokrat, N.; Hu, Z. W.; Wang, Z. H.; Xu, R.; Wei, Y. W.; Shen, Q. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials 2021, 266, 120429.

64

Jia, C. Y.; Deacon, G. B.; Zhang, Y. J.; Gao, C. Z. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord. Chem. Rev. 2021, 429, 213640.

65

Meng, X.; Zhang, F.; Guo, H. L.; Zhang, C. Y.; Hu, H. T.; Wang, W.; Liu, J.; Shuai, X. T.; Cao, Z. One-pot approach to Fe2+/Fe3+ -based MOFs with enhanced catalytic activity for Fenton reaction. Adv. Healthc. Mater. 2021, 10, 2100780.

66

Wan, X. Y.; Song, L. Q.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano 2020, 14, 11017–11028.

67

Fu, L. H.; Wan, Y. L.; Qi, C.; He, J.; Li, C. Y.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 2021, 33, 2006892.

68

Dai, Y. L.; Guo, J. L.; Wang, T. Y.; Ju, Y.; Mitchell, A. J.; Bonnard, T.; Cui, J. W.; Richardson, J. J.; Hagemeyer, C. E.; Alt, K. et al. Self-assembled nanoparticles from phenolic derivatives for cancer therapy. Adv. Healthc. Mater. 2017, 6, 1700467.

69

Zhao, J.; Blayney, A.; Liu, X. R.; Gandy, L.; Jin, W. H.; Yan, L. F.; Ha, J. H.; Canning, A. J.; Connelly, M.; Yang, C. et al. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nat. Commun. 2021, 12, 986.

70

Heyza, J. R.; Arora, S.; Zhang, H.; Conner, K. L.; Lei, W.; Floyd, A. M.; Deshmukh, R. R.; Sarver, J.; Trabbic, C. J.; Erhardt, P. et al. Targeting the DNA repair endonuclease ERCC1-XPF with green tea polyphenol epigallocatechin-3-gallate (EGCG) and its prodrug to enhance cisplatin efficacy in human cancer cells. Nutrients 2018, 10, 1644.

71

Luo, S. Y.; Wang, Y.; Shen, S. H.; Tang, P.; Liu, Z. Y.; Zhang, S.; Wu, D. C. IR780-loaded hyaluronic acid@gossypol-Fe(III)-EGCG infinite coordination polymer nanoparticles for highly efficient tumor photothermal/coordinated dual drugs synergistic therapy. Adv. Funct. Mater. 2021, 31, 2100954.

72

Ren, Z. G.; Sun, S. C.; Sun, R. R.; Cui, G. Y.; Hong, L. J.; Rao, B. C.; Li, A.; Yu, Z. J.; Kan, Q. C.; Mao, Z. W. A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv. Mater. 2020, 32, 1906024.

73

Kong, Y.; Liu, F.; Ma, B. J.; Wang, W. H.; Li, L.; Xu, X. Y.; Sun, Z. Y.; Yang, H. R.; Sang, Y. H.; Li, D. et al. Intracellular pH-responsive iron-catechin nanoparticles with osteogenic/anti-adipogenic and immunomodulatory effects for efficient bone repair. Nano Res. 2022, 15, 1153–1161.

74

Zhou, Z. Q.; Gong, F.; Zhang, P.; Wang, X. T.; Zhang, R.; Xia, W.; Gao, X.; Zhou, X. Z.; Cheng, L. Natural product curcumin-based coordination nanoparticles for treating osteoarthritis via targeting Nrf2 and blocking NLRP3 inflammasome. Nano Res. 2022, 15, 3338–3345.

75

Qin, J.; Liang, G. H.; Feng, Y. Y.; Feng, B. X.; Wang, G.; Wu, N.; Zhao, Y. X.; Wei, J. Synthesis of gadolinium/iron-bimetal-phenolic coordination polymer nanoparticles for theranostic applications. Nanoscale 2020, 12, 6096–6103.

76

Shan, L. L.; Gao, G. Z.; Wang, W. W.; Tang, W.; Wang, Z. T.; Yang, Z.; Fan, W. P.; Zhu, G. Z.; Zhai, K. F.; Jacobson, O. et al. Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials 2019, 210, 62–69.

77

Cao, H. P.; Sethumadhavan, K.; Wu, X. Y.; Zeng, X. C. Cottonseed-derived gossypol and ethanol extracts differentially regulate cell viability and VEGF gene expression in mouse macrophages. Sci. Rep. 2021, 11, 15700.

78

Zhang, Z.; Xie, L. S.; Ju, Y.; Dai, Y. L. Recent advances in metal-phenolic networks for cancer theranostics. Small 2021, 17, 2100314.

79

Zhang, Z.; Sang, W.; Xie, L. S.; Li, W. X.; Li, B.; Li, J.; Tian, H.; Yuan, Z.; Zhao, Q.; Dai, Y. L. Polyphenol-based nanomedicine evokes immune activation for combination cancer treatment. Angew. Chem., Int. Ed. 2021, 60, 1967–1975.

80

Zhuo, S. Y.; Yu, X.; Wang, C.; Liu, S. L.; Wang, X. F.; Tian, Y. Engineering hollow metal ion-phenolic capsules and metal-doped hollow mesoporous carbon spheres with “full green” style. Mater. Lett. 2021, 289, 129440.

81

Wang, Q.; Gao, Z. L.; Zhong, Q. Z.; Wang, N.; Mei, H. X.; Dai, Q.; Cui, J. W.; Hao, J. C. Encapsulation of enzymes in metal-phenolic network capsules for the trigger of intracellular cascade reactions. Langmuir 2021, 37, 11292–11300.

82

Pan, S. J.; Goudeli, E.; Chen, J. Q.; Lin, Z. X.; Zhong, Q. Z.; Zhang, W. J.; Yu, H. T.; Guo, R.; Richardson, J. J.; Caruso, F. Exploiting supramolecular dynamics in metal-phenolic networks to generate metal-oxide and metal-carbon networks. Angew. Chem., Int. Ed. 2021, 60, 14586–14594.

83

Wei, Y. Q.; Wei, Z. Z.; Luo, P. C.; Wei, W.; Liu, S. Q. pH-sensitive metal-phenolic network capsules for targeted photodynamic therapy against cancer cells. Artif. Cells, Nanomed., Biotechnol. 2018, 46, 1552–1561.

84

Zhang, Z. J.; Yang, Y.; Sun, L.; Liu, R. Direct conversion of metal-polyphenolic coordination assembly to MnOx-Carbon nanocomposites for catalytic degradation of methylene blue. Mater. Lett. 2018, 221, 97–100.

85

Dai, Q.; Geng, H. M.; Yu, Q.; Hao, J. C.; Cui, J. W. Polyphenol-based particles for theranostics. Theranostics 2019, 9, 3170–3190.

86

Wang, X. Y.; Fan, Y. L.; Yan, J. J.; Yang, M. Engineering polyphenol-based polymeric nanoparticles for drug delivery and bioimaging. Chem. Eng. J. 2022, 439, 135661.

87

Ping, Y.; Guo, J. L.; Ejima, H.; Chen, X.; Richardson, J. J.; Sun, H. L.; Caruso, F. pH-responsive capsules engineered from metalphenolic networks for anticancer drug delivery. Small 2015, 11, 2032–2036.

88

Guo, J. L.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J. J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C. E. et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem., Int. Ed. 2014, 53, 5546–5551.

89

Kargozar, S.; Baino, F.; Hamzehlou, S.; Hamblin, M. R.; Mozafari, M. Nanotechnology for angiogenesis: Opportunities and challenges. Chem. Soc. Rev. 2020, 49, 5008–5057.

90

Xiao, J. S.; Chen, S. Y.; Yi, J.; Zhang, H. F.; Ameer, G. A. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv. Funct. Mater. 2017, 27, 1604872.

91

Xiao, J. S.; Zhu, Y. X.; Huddleston, S.; Li, P.; Xiao, B. X.; Farha, O. K.; Ameer, G. A. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 2018, 12, 1023–1032.

92

Zhang, C. S.; Yu, K. J.; Li, F. H.; Xiang, J. H. Acute toxic effects of zinc and mercury on survival, standard metabolism, and metal accumulation in juvenile ridgetail white prawn, Exopalaemon carinicauda. Ecotoxicol. Environ. Saf. 2017, 145, 549–556.

93

Duan, J. W.; Chen, Z. G.; Liang, X. Y.; Chen, Y. L.; Li, H. Y.; Tian, X. X.; Zhang, M. M.; Wang, X. L.; Sun, H. F.; Kong, D. L. et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials 2020, 255, 120199.

94

Chen, Z. G.; Duan, J. W.; Diao, Y. P.; Chen, Y. L.; Liang, X. Y.; Li, H. Y.; Miao, Y. Q.; Gao, Q.; Gui, L.; Wang, X. L. et al. ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioact. Mater 2021, 6, 1–11.

95

Wang, X. L.; Li, X. L.; Liang, X. Y.; Liang, J. Y.; Zhang, C.; Yang, J.; Wang, C.; Kong, D. L.; Sun, H. F. ROS-responsive capsules engineered from green tea polyphenol-metal networks for anticancer drug delivery. J. Mater. Chem. B 2018, 6, 1000–1010.

96

Lin, M. H.; Dai, Y.; Xia, F.; Zhang, X. J. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Mater. Sci. Eng. C 2021, 119, 111626.

97

Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018, 118, 6844–6892.

98

Zhao, Y.; He, Z. Y.; Gao, H.; Tang, H. Y.; He, J. H.; Guo, Q.; Zhang, W. L.; Liu, J. P. Fine tuning of core–shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in antiatherosclerotic therapy. Biomacromolecules 2018, 19, 2944–2956.

99

Sim, T.; Kim, J. E.; Hoang, N. H.; Kang, J. K.; Lim, C.; Kim, D. S.; Lee, E. S.; Youn, Y. S.; Choi, H. G.; Han, H. K. et al. Development of a docetaxel micellar formulation using poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) with successful reconstitution for tumor targeted drug delivery. Drug Deliv. 2018, 25, 1362–1371.

100

Ye, M. Z.; Zhao, Y.; Wang, Y. Y.; Zhao, M.; Yodsanit, N.; Xie, R. S.; Andes, D.; Gong, S. Q. A dual-responsive antibiotic-loaded nanoparticle specifically binds pathogens and overcomes antimicrobial-resistant infections. Adv. Mater. 2021, 33, 2006772.

101

Seto, A.; Kajiwara, R.; Song, J.; Shin, E.; Kim, B. S.; Kofujita, H.; Oishi, Y.; Shibasaki, Y. Preparation of glycoside polymer micelles with antioxidant polyphenolic cores using alkylated poly(arbutin)s. RSC Adv. 2019, 9, 7777–7785.

102

Guo, Y. X.; Sun, Q.; Wu, F. G.; Dai, Y. L.; Chen, X. Y. Polyphenol-containing nanoparticles: Synthesis, properties, and therapeutic delivery. Adv. Mater. 2021, 33, 2007356.

103

Lu, Y.; Yue, Z. G.; Xie, J. B.; Wang, W.; Zhu, H.; Zhang, E. S.; Cao, Z. Q. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2018, 2, 318–325.

104

Gao, M.; Deng, J.; Liu, F.; Fan, A. P.; Wang, Y. J.; Wu, H. Y.; Ding, D.; Kong, D. L.; Wang, Z.; Peer, D. et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019, 223, 119486.

105

Liang, K.; Chung, J. E.; Gao, S. J.; Yongvongsoontorn, N.; Kurisawa, M. Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy. Adv. Mater. 2018, 30, 1706963.

106

Chen, X. Y.; Yi, Z.; Chen, G. C.; Ma, X. M.; Su, W.; Deng, Z. W.; Ma, L.; Tong, Q. L.; Ran, Y. Q.; Li, X. D. Carrier-enhanced photodynamic cancer therapy of self-assembled green tea polyphenol-based nanoformulations. ACS Sustainable Chem. Eng. 2020, 8, 16372–16384.

107

Patel, A. R. Functional and engineered colloids from edible materials for emerging applications in designing the food of the future. Adv. Funct. Mater. 2020, 30, 1806809.

108

Bae, K. H.; Tan, S.; Yamashita, A.; Ang, W. X.; Gao, S. J.; Wang, S.; Chung, J. E.; Kurisawa, M. Hyaluronic acid-green tea catechin micellar nanocomplexes: Fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity. Biomaterials 2017, 148, 41–53.

109

Li, X. X.; Wang, X. Y.; Liu, Q. F.; Yan, J. J.; Pan, D. H.; Wang, L. Z.; Xu, Y. P.; Wang, F.; Liu, Y. H.; Li, X. T. et al. ROS-responsive boronate-stabilized polyphenol-poloxamer 188 assembled dexamethasone nanodrug for macrophage repolarization in osteoarthritis treatment. Adv. Healthc. Mater. 2021, 10, 2100883.

110

Jiang, W.; Zhou, H.; Wang, Q.; Chen, Z. Q.; Dong, W.; Guo, Z. X.; Li, Y.; Zhao, W.; Zhan, M. X.; Wang, Y. C. et al. High drug loading and pH-responsive nanomedicines driven by dynamic boronate covalent chemistry for potent cancer immunotherapy. Nano Res. 2021, 14, 3913–3920.

111

Wang, X. Y.; Yan, J. J.; Wang, L. Z.; Pan, D. H.; Yang, R. L.; Xu, Y. P.; Sheng, J.; Huang, Q. H.; Zhao, H. M.; Yang, M. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy. Chem. Mater. 2018, 30, 4073–4080.

112

Le, Z. C.; Chen, Y. T.; Han, H. H.; Tian, H. K.; Zhao, P. F.; Yang, C. B.; He, Z. Y.; Liu, L. X.; Leong, K. W.; Mao, H. Q. et al. Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 42186–42197.

113

Wang, X. Y.; Chen, Y. H.; Dahmani, F. Z.; Yin, L. F.; Zhou, J. P.; Yao, J. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 2014, 35, 7654–7665.

114

Lomova, M. V.; Brichkina, A. I.; Kiryukhin, M. V.; Vasina, E. N.; Pavlov, A. M.; Gorin, D. A.; Sukhorukov, G. B.; Antipina, M. N. Multilayer capsules of bovine serum albumin and tannic acid for controlled release by enzymatic degradation. ACS Appl. Mater. Interfaces 2015, 7, 11732–11740.

115

Jacobs, J.; Pavlović, D.; Prydderch, H.; Moradi, M. A.; Ibarboure, E.; Heuts, J. P. A.; Lecommandoux, S.; Heise, A. Polypeptide nanoparticles obtained from emulsion polymerization of amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 2019, 141, 12522–12526.

116

Cheng, M.; Dou, H. J. Nano-assemblies based on biomacromolecules to overcome cancer drug resistance. Polym. Int. 2021, 71, 371–378.

117

Fei, Y.; Li, M. H.; Li, Y. N.; Wang, X.; Xue, C. C.; Wu, Z. S.; Xu, J. Y.; Xiazeng, Z. L.; Cai, K. Y.; Luo, Z. Hierarchical integration of degradable mesoporous silica nanoreservoirs and supramolecular dendrimer complex as a general-purpose tumor-targeted biomimetic nanoplatform for gene/small-molecule anticancer drug co-delivery. Nanoscale 2020, 12, 16102–16112.

118

Mix, K. A.; Lomax, J. E.; Raines, R. T. Cytosolic delivery of proteins by bioreversible esterification. J. Am. Chem. Soc. 2017, 139, 14396–14398.

119

Chang, H.; Lv, J.; Gao, X.; Wang, X.; Wang, H.; Chen, H.; He, X.; Li, L.; Cheng, Y. Y. Rational design of a polymer with robust efficacy for intracellular protein and peptide delivery. Nano Lett. 2017, 17, 1678–1684.

120

Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J. Y.; Afonin, K. A.; Dobrovolskaia, M. A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Del. Rev. 2022, 180, 114079.

121

Vardaxi, A.; Kafetzi, M.; Pispas, S. Polymeric nanostructures containing proteins and peptides for pharmaceutical applications. Polymers 2022, 14, 777.

122

Lila, A. S. A.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J. Controlled Release 2013, 172, 38–47.

123

He, H.; Chen, Y. B.; Li, Y. J.; Song, Z. Y.; Zhong, Y. N.; Zhu, R. Y.; Cheng, J. J.; Yin, L. C. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv. Funct. Mater. 2018, 28, 1706710.

124

Costa, C.; Liu, Z. H.; Simões, S. I.; Correia, A.; Rahikkala, A.; Seitsonen, J.; Ruokolainen, J.; Aguiar-Ricardo, A.; Santos, H. A.; Corvo, M. L. One-step microfluidics production of enzyme-loaded liposomes for the treatment of inflammatory diseases. Colloids Surf. B. Biointerfaces 2021, 199, 111556.

125

Li, H.; Somiya, M.; Kuroda, S. Enhancing antibody-dependent cellular phagocytosis by re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Biomaterials 2021, 268, 120601.

126
Mittelheisser, V.; Coliat, P.; Moeglin, E.; Goepp, L.; Goetz, J. G.; Charbonnière, L. J.; Pivot, X.; Detappe, A. Optimal physicochemical properties of antibody-nanoparticle conjugates for improved tumor targeting. Adv. Mater., in press, https://doi.org/10.1002/adma.202110305.
DOI
127

Lau, H. H.; Murney, R.; Yakovlev, N. L.; Novoselova, M. V.; Lim, S. H.; Roy, N.; Singh, H.; Sukhorukov, G. B.; Haigh, B.; Kiryukhin, M. V. Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives. J. Colloid Interface Sci. 2017, 505, 332–340.

128

Qi, Y. T.; Li, J. R.; Nie, Q.; Gao, M. J.; Yang, Q. H.; Li, Z. M.; Li, Q.; Han, S. L.; Ding, J.; Li, Y. Q. et al. Polyphenol-assisted facile assembly of bioactive nanoparticles for targeted therapy of heart diseases. Biomaterials 2021, 275, 120952.

129

Xie, L. Y.; Wehling, R. L.; Ciftci, O.; Zhang, Y. Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin. Food Res. Int. 2017, 102, 195–202.

130

Luo, R. F.; Lin, M. S.; Zhang, C.; Shi, J. F.; Zhang, S. Y.; Chen, Q. Y.; Hu, Y. C.; Zhang, M. Y.; Zhang, J. M.; Gao, F. Genipin-crosslinked human serum albumin coating using a tannic acid layer for enhanced oral administration of curcumin in the treatment of ulcerative colitis. Food Chem. 2020, 330, 127241.

131

Honda, Y.; Nomoto, T.; Matsui, M.; Takemoto, H.; Kaihara, Y.; Miura, Y.; Nishiyama, N. Sequential self-assembly using tannic acid and phenylboronic acid-modified copolymers for potential protein delivery. Biomacromolecules 2020, 21, 3826–3835.

132

Liu, C. Y.; Shen, W. W.; Li, B. N.; Li, T. F.; Chang, H.; Cheng, Y. Y. Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chem. Mater. 2019, 31, 1956–1965.

133

Han, Y. Y.; Zhou, J. J.; Hu, Y. J.; Lin, Z. X.; Ma, Y. T.; Richardson, J. J.; Caruso, F. Polyphenol-based nanoparticles for intracellular protein deliveryviacompeting supramolecular interactions. ACS Nano 2020, 14, 12972–12981.

134

Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discovery 2020, 19, 277–289.

135

Wu, X.; Farooq, M. A.; Li, T. T.; Geng, T. J.; Kutoka, P. T.; Wang, B. Cationic chitosan-modified silica nanoparticles for oral delivery of protein vaccine. J. Biomed. Mater. Res., Part A 2021, 109, 2111–2119.

136

Chang, K. W.; Liu, Z. H.; Fang, X. F.; Chen, H. B.; Men, X. J.; Yuan, Y.; Sun, K.; Zhang, X. J.; Yuan, Z.; Wu, C. F. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett. 2017, 17, 4323–4329.

137

Fu, L. H.; Qi, C.; Lin, J.; Huang, P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 2018, 47, 6454–6472.

138

Dai, Y. L.; Cheng, S. Y.; Wang, Z. L.; Zhang, R. L.; Yang, Z.; Wang, J. J.; Yung, B. C.; Wang, Z. T.; Jacobson, O.; Xu, C. et al. Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles. ACS Nano 2018, 12, 455–463.

139

Zhao, W. G.; Hu, J.; Gao, W. P. Glucose oxidase-polymer nanogels for synergistic cancer-starving and oxidation therapy. ACS Appl. Mater. Interfaces 2017, 9, 23528–23535.

140

Zhang, L.; Wan, S. S.; Li, C. X.; Xu, L.; Cheng, H.; Zhang, X. Z. An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and Acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018, 18, 7609–7618.

141

Guo, Y. X.; Jia, H. R.; Zhang, X. D.; Zhang, X. P.; Sun, Q.; Wang, S. Z.; Zhao, J.; Wu, F. G. A glucose/oxygen-exhausting nanoreactor for starvation-and hypoxia-activated sustainable and cascade chemo-chemodynamic therapy. Small 2020, 16, 2000897.

142

Chung, J. E.; Tan, S. S.; Gao, S. J.; Yongvongsoontorn, N.; Kim, S. H.; Lee, J. H.; Choi, H. S.; Yano, H.; Zhuo, L.; Kurisawa, M. et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat. Nanotechnol. 2014, 9, 907–912.

143

Liang, K.; Ng, S.; Lee, F.; Lim, J.; Chung, J. E.; Lee, S. S.; Kurisawa, M. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater. 2016, 33, 142–152.

144

Ge, G.; Guo, W. X.; Zheng, J. B.; Zhao, M. M.; Sun, W. Z. Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor. Food Hydrocolloids 2021, 111, 106177.

145

Skrt, M.; Benedik, E.; Podlipnik, Č.; Ulrih, N. P. Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem. 2012, 135, 2418–2424.

146

Stojadinovic, M.; Radosavljevic, J.; Ognjenovic, J.; Vesic, J.; Prodic, I.; Stanic-Vucinic, D.; Velickovic, T. C. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chem. 2013, 136, 1263–1271.

147

Mehranfar, F.; Bordbar, A. K.; Parastar, H. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles. J. Photochem. Photobiol. B:Biol. 2013, 127, 100–107.

148

Wan, Z. L.; Wang, J. M.; Wang, L. Y.; Yuan, Y.; Yang, X. Q. Complexation of resveratrol with soy protein and its improvement on oxidative stability of corn oil/water emulsions. Food Chem. 2014, 161, 324–331.

149

Xu, J. H.; Hao, M. H.; Sun, Q. F.; Tang, L. Comparative studies of interaction of β-lactoglobulin with three polyphenols. Int. J. Biol. Macromol. 2019, 136, 804–812.

150

Jia, J. J.; Gao, X.; Hao, M. H.; Tang, L. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chem. 2017, 228, 143–151.

151

Ren, G. Y.; Sun, H.; Guo, J. Y.; Fan, J. L.; Li, G.; Xu, S. W. Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking. Food Funct. 2019, 10, 3291–3302.

152

Yu, Q.; Fan, L. P.; Duan, Z. H. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem. 2019, 297, 124910.

153

Meyerowitz, J. G.; Robertson, M. J.; Barros-Álvarez, X.; Panova, O.; Nwokonko, R. M.; Gao, Y.; Skiniotis, G. The oxytocin signaling complex reveals a molecular switch for cation dependence. Nat. Struct. Mol. Biol. 2022, 29, 274–281.

154

Yang, Q. M.; Zhou, F.; Tang, X. L.; Wang, J. L.; Feng, H.; Jiang, W.; Jin, L. F.; Jiang, N.; Yuan, Y. L.; Han, J. et al. Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. Eur. J. Med. Chem. 2022, 233, 114214.

155

Zhang, Y. J.; Zhang, H. R.; Ghosh, D.; Williams III, R. O. Just how prevalent are peptide therapeutic products? A critical review. Int. J. Pharm. 2020, 587, 119491.

156

Ilangala, A. B.; Lechanteur, A.; Fillet, M.; Piel, G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur. J. Pharm. Biopharm. 2021, 167, 140–158.

157

Chen, W.; Wang, G. H.; Yung, B. C.; Liu, G.; Qian, Z. Y.; Chen, X. Y. Long-acting release formulation of exendin-4 based on biomimetic mineralization for type 2 diabetes therapy. ACS Nano 2017, 11, 5062–5069.

158

Weber, F.; Liao, W. C.; Barrantes, A.; Edén, M.; Tiainen, H. Silicate-phenolic networks: Coordination-mediated deposition of bioinspired tannic acid coatings. Chem. —Eur. J. 2019, 25, 9870–9874.

159

He, Z. Y.; Hu, Y. Z.; Gui, Z. Z.; Zhou, Y.; Nie, T. Q.; Zhu, J. C.; Liu, Z. J.; Chen, K. T.; Liu, L. X.; Leong, K. W. et al. Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes. J. Controlled Release 2019, 301, 119–128.

160

He, Z. Y.; Nie, T. Q.; Hu, Y. Z.; Zhou, Y.; Zhu, J. C.; Liu, Z. J.; Liu, L. X.; Leong, K. W.; Chen, Y. M.; Mao, H. Q. A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. J. Controlled Release 2020, 318, 86–97.

161

Qiao, H. Z.; Fang, D.; Zhang, L.; Gu, X. C.; Lu, Y.; Sun, M. J.; Sun, C. M.; Ping, Q. N.; Li, J. S.; Chen, Z. P. et al. Nanostructured peptidotoxins as natural pro-oxidants induced cancer cell death via amplification of oxidative stress. ACS Appl. Mater. Interfaces 2018, 10, 4569–4581.

162

Braendstrup, P.; Levine, B. L.; Ruella, M. The long road to the first FDA-approved gene therapy: Chimeric antigen receptor T cells targeting CD19. Cytotherapy 2020, 22, 57–69.

163

Wang, D.; Tai, P. W. L.; Gao, G. P. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discovery 2019, 18, 358–378.

164

Cui, J. J.; Qin, L. F.; Zhang, J. W.; Abrahimi, P.; Li, H.; Li, G. X.; Tietjen, G. T.; Tellides, G.; Pober, J. S.; Saltzman, W. M. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nat. Commun. 2017, 8, 191.

165

Shen, W. W.; Wang, R. J.; Fan, Q. Q.; Li, Y. W.; Cheng, Y. Y. Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Ther. 2020, 27, 383–391.

166

Chanphai, P.; Tajmir-Riahi, H. A. Structural dynamics of DNA binding to tea catechins. Int. J. Biol. Macromol. 2019, 125, 238–243.

167

Dhandapani, R. K.; Gurusamy, D.; Palli, S. R. Development of Catechin, Poly-L-lysine, and double-stranded RNA nanoparticles. ACS Appl. Bio Mater. 2021, 4, 4310–4318.

168

Shen, W. W.; Wang, Q. W.; Shen, Y.; Gao, X.; Li, L.; Yan, Y.; Wang, H.; Cheng, Y. Y. Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers. ACS Cent. Sci. 2018, 4, 1326–1333.

169

Gao, B.; Zhang, Q. P.; Wang, X. Y.; Wang, M. Y.; Ren, X. K.; Guo, J. T.; Xia, S. H.; Zhang, W. C.; Feng, Y. K. A “self-accelerating endosomal escape” siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomater. Sci. 2019, 7, 3307–3319.

170

Fan, Q. Q.; Yang, Z.; Li, Y. H.; Cheng, Y. Y.; Li, Y. W. Polycatechol mediated small interfering RNA delivery for the treatment of ulcerative colitis. Adv. Funct. Mater. 2021, 31, 2101646.

171

Liang, K.; Bae, K. H.; Lee, F.; Xu, K. M.; Chung, J. E.; Gao, S. J.; Kurisawa, M. Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery. J. Controlled Release 2016, 226, 205–216.

172

Beetch, M.; Harandi-Zadeh, S.; Shen, K.; Lubecka, K.; Kitts, D. D.; O’Hagan, H. M.; Stefanska, B. Dietary antioxidants remodel DNA methylation patterns in chronic disease. Br. J. Pharmacol. 2020, 177, 1382–1408.

173

Zan, R.; Wang, H.; Cai, W. J.; Ni, J. H.; Luthringer-Feyerabend, B. J. C.; Wang, W. H.; Peng, H. Z.; Ji, W. P.; Yan, J.; Xia, J. X. et al. Controlled release of hydrogen by implantation of magnesium induces P53-mediated tumor cells apoptosis. Bioact. Mater. 2022, 9, 385–396.

174

Chen, Z. H.; Yu, T.; Zhou, B. F.; Wei, J. H.; Fang, Y.; Lu, J.; Guo, L.; Chen, W.; Liu, Z. P.; Luo, J. H. Mg(II)-Catechin nanoparticles delivering siRNA targeting EIF5A2 inhibit bladder cancer cell growth in vitro and in vivo. Biomaterials 2016, 81, 125–134.

175

Ding, J.; Liang, T. X. Z.; Min, Q. H.; Jiang, L. P.; Zhu, J. J. “Stealth and fully-laden” drug carriers:Self-assembled nanogels encapsulated with epigallocatechin gallate and siRNA for drug-resistant breast cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 9938–9948.

176

Farina, M.; Alexander, J. F.; Thekkedath, U.; Ferrari, M.; Grattoni, A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Del. Rev. 2019, 139, 92–115.

177

Zhu, K. X.; Yu, Y. R.; Cheng, Y.; Tian, C. H.; Zhao, G.; Zhao, Y. J. All-aqueous-phase microfluidics for cell encapsulation. ACS Appl. Mater. Interfaces 2019, 11, 4826–4832.

178

Yang, L.; Liu, Y. X.; Sun, L. Y.; Zhao, C.; Chen, G. P.; Zhao, Y. J. Biomass microcapsules with stem cell encapsulation for bone repair. Nanomicro Lett. 2022, 14, 4.

179

Wang, W. S.; Wang, S. T. Cell-based biocomposite engineering directed by polymers. Lab Chip 2022, 22, 1042–1067.

180

Marfil-Garza, B. A.; Polishevska, K.; Pepper, A. R.; Korbutt, G. S. Current state and evidence of cellular encapsulation strategies in type 1 diabetes. Compr. Physiol. 2020, 10, 839–878.

181

An, D.; Chiu, A.; Flanders, J. A.; Song, W.; Shou, D. H.; Lu, Y. C.; Grunnet, L. G.; Winkel, L.; Ingvorsen, C.; Christophersen, N. S. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl. Acad. Sci. USA 2018, 115, E263–E272.

182

Kozlovskaya, V.; Zavgorodnya, O.; Chen, Y.; Ellis, K.; Tse, H. M.; Cui, W. X.; Thompson, J. A.; Kharlampieva, E. Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv. Funct. Mater. 2012, 22, 3389–3398.

183

Pham-Hua, D.; Padgett, L. E.; Xue, B.; Anderson, B.; Zeiger, M.; Barra, J. M.; Bethea, M.; Hunter, C. S.; Kozlovskaya, V.; Kharlampieva, E. et al. Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking. Biomaterials 2017, 128, 19–32.

184

Chen, W.; Yang, Z.; Fu, X. C.; Du, L. P.; Tian, Y. L.; Wang, J.; Cai, W.; Guo, P.; Wu, C. S. Synthesis of a removable cytoprotective exoskeleton by tea polyphenol complexes for living cell encapsulation. ACS Biomater. Sci. Eng. 2021, 7, 764–771.

185

Park, J. H.; Kim, K.; Lee, J.; Choi, J. Y.; Hong, D.; Yang, S. H.; Caruso, F.; Lee, Y.; Choi, I. S. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angew. Chem. , Int. Ed. 2014, 53, 12420–1225.

186

Oliva, N.; Conde, J.; Wang, K.; Artzi, N. Designing hydrogels for on-demand therapy. Acc. Chem. Res. 2017, 50, 669–679.

187

Chen, T.; Chen, Y. J.; Rehman, H. U.; Chen, Z.; Yang, Z.; Wang, M.; Li, H.; Liu, H. Z. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl. Mater. Interfaces 2018, 10, 33523–33531.

188

Dimatteo, R.; Darling, N. J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Del. Rev. 2018, 127, 167–184.

189

Sharma, S.; Kumar, A.; Deepak; Kumar, R.; Rana, N. K.; Koch, B. Development of a novel chitosan based biocompatible and self-healing hydrogel for controlled release of hydrophilic drug. Int. J. Biol. Macromol. 2018, 116, 37–44.

190

Huang, Z. J.; Delparastan, P.; Burch, P.; Cheng, J.; Cao, Y.; Messersmith, P. B. Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols. Biomater. Sci. 2018, 6, 2487–2495.

191

Zhou, L.; Fan, L.; Yi, X.; Zhou, Z. N.; Liu, C.; Fu, R. M.; Dai, C.; Wang, Z. G.; Chen, X. X.; Yu, P. et al. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano 2018, 12, 10957–10967.

192

Kim, S. H.; Kim, K.; Kim, B. S.; An, Y. H.; Lee, U. J.; Lee, S. H.; Kim, S. L.; Kim, B. G.; Hwang, N. S. Fabrication of polyphenol-incorporated anti-inflammatory hydrogel via high-affinity enzymatic crosslinking for wet tissue adhesion. Biomaterials 2020, 242, 119905.

193

Kim, B. S.; Kim, S. H.; Kim, K.; An, Y. H.; So, K. H.; Kim, B. G.; Hwang, N. S. Enzyme-mediated one-pot synthesis of hydrogel with the polyphenol cross-linker for skin regeneration. Mater. Today Bio 2020, 8, 100079.

194

Wang, T. Y.; Fan, Q. Q.; Hong, J. X.; Chen, Z.; Zhou, X. J.; Zhang, J. H.; Dai, Y. Q.; Jiang, H.; Gu, Z. P.; Cheng, Y. Y. et al. Therapeutic nanoparticles from grape seed for modulating oxidative stress. Small 2021, 17, 2102485.

195

Yang, P.; Zhang, J. H.; Xiang, S. Y.; Jin, Z. K.; Zhu, F.; Wang, T. Y.; Duan, G. G.; Liu, X. H.; Gu, Z. P.; Li, Y. W. Green nanoparticle scavengers against oxidative stress. ACS Appl. Mater. Interfaces 2021, 13, 39126–39134.

196

Hu, B.; Shen, Y.; Adamcik, J.; Fischer, P.; Schneider, M.; Loessner, M. J.; Mezzenga, R. Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity. ACS Nano 2018, 12, 3385–3396.

197

Deng, Z. X.; Guo, Y.; Zhao, X.; Ma, P. X.; Guo, B. L. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 2018, 30, 1729–1742.

198

Hu, J. J.; Hu, Q. Y.; He, X.; Liu, C. X.; Kong, Y. L.; Cheng, Y. Y.; Zhang, Y. D. Stimuli-responsive hydrogels with antibacterial activity assembled from guanosine, aminoglycoside, and a bifunctional anchor. Adv. Healthc. Mater. 2020, 9, 1901329.

199

Ninan, N.; Forget, A.; Shastri, V. P.; Voelcker, N. H.; Blencowe, A. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces 2016, 8, 28511–28521.

200
Xu, Z. J.; Liu, G. T.; Li, Q.; Wu, J. A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Res., in press, https://doi.org/10.1007/s12274-022-4192-y.
DOI
201

Zheng, H. Y.; Zuo, B. Q. Functional silk fibroin hydrogels: Preparation, properties and applications. J. Mater. Chem. B 2021, 9, 1238–1258.

202

Jeon, Y. D.; Lee, J. H.; Lee, Y. M.; Kim, D. K. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed. Pharmacother. 2020, 124, 109847.

203

Zhong, Y. J.; Zhao, J. C.; Dai, T. T.; McClements, D. J.; Liu, C. M. The effect of whey protein−puerarin interactions on the formation and performance of protein hydrogels. Food Hydrocolloids 2021, 113, 106444.

204

Shin, M.; Ryu, J. H.; Park, J. P.; Kim, K.; Yang, J. W.; Lee, H. DNA/Tannic acid hybrid gel exhibiting biodegradability, extensibility, tissue adhesiveness, and hemostatic ability. Adv. Funct. Mater. 2015, 25, 1270–1278.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 March 2022
Revised: 10 April 2022
Accepted: 12 April 2022
Published: 28 May 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82003673) and the National Key R&D Program of China (Nos. 2019YFC0312101 and 2019YFC0312102).

Return