Journal Home > Volume 15 , Issue 9

Aqueous synthesis is a green but challenging pathway to produce cadmium-free, bright, and near-infrared (NIR) emitting quantum dots (QDs). Herein, we develop a straightforward aqueous phase approach to prepare Zn-Cu-In-Se QDs with tunable emission from 630 to 800 nm through varying the molar ratio of Zn and Cu. The ultrasmall nanoparticle size remains nearly fixed (~ 2.6 nm) when the QD composition is varied, allowing for the effects of composition on the optical properties of QDs to be decoupled from the impact of particle size. By leveraging the off-stoichiometric effect on photoluminescence (PL), Zn-Cu-In-Se QDs with a Zn:Cu molar ratio of 1.0 show a long PL decay lifetime of 211 ns and an absolute photoluminescence quantum yield (PLQY) of 14.2%. The PLQY is further enhanced by overcoating a ZnS shell, reaching up to 25.8%. Based on the bright, biocompatible, and emission-tunable QDs, nanoprobes with targeting capability for multiple tumor markers are further constructed and employed to simultaneously ascertain targets in the cytoplasm and cell membrane. This study provides a green and effective strategy for achieving bright and biocompatible NIR quantum dots for multiplexed biodetection applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aqueous synthesis of bright near-infrared-emitting Zn-Cu-In-Se quantum dots for multiplexed detection of tumor markers

Show Author's information Hui Liu1Peng Cai2Kevin J. McHugh3Collin F. Perkinson4Laishuo Li1Shuna Wang1Wei Wang1Mingxia Jiao1( )Xiliang Luo1( )Lihong Jing5( )
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Qingdao Juchuang Environmental Protection Group Co., Ltd., Qingdao 266107, China
Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Aqueous synthesis is a green but challenging pathway to produce cadmium-free, bright, and near-infrared (NIR) emitting quantum dots (QDs). Herein, we develop a straightforward aqueous phase approach to prepare Zn-Cu-In-Se QDs with tunable emission from 630 to 800 nm through varying the molar ratio of Zn and Cu. The ultrasmall nanoparticle size remains nearly fixed (~ 2.6 nm) when the QD composition is varied, allowing for the effects of composition on the optical properties of QDs to be decoupled from the impact of particle size. By leveraging the off-stoichiometric effect on photoluminescence (PL), Zn-Cu-In-Se QDs with a Zn:Cu molar ratio of 1.0 show a long PL decay lifetime of 211 ns and an absolute photoluminescence quantum yield (PLQY) of 14.2%. The PLQY is further enhanced by overcoating a ZnS shell, reaching up to 25.8%. Based on the bright, biocompatible, and emission-tunable QDs, nanoprobes with targeting capability for multiple tumor markers are further constructed and employed to simultaneously ascertain targets in the cytoplasm and cell membrane. This study provides a green and effective strategy for achieving bright and biocompatible NIR quantum dots for multiplexed biodetection applications.

Keywords: quantum dots, photoluminescence, imaging, cadmium-free, aqueous synthesis

References(53)

1

Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.

2

McHugh, K. J.; Jing, L. H.; Severt, S. Y.; Cruz, M.; Sarmadi, M.; Jayawardena, H. S. N.; Perkinson, C. F.; Larusson, F.; Rose, S.; Tomasic, S. et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 2019, 11, eaay7162.

3

Chen, B. K.; Pradhan, N.; Zhong, H. Z. From large-scale synthesis to lighting device applications of ternary I–III–VI semiconductor nanocrystals: Inspiring greener material emitters. J. Phys. Chem. Lett. 2018, 9, 435–445.

4

Soares, J. X.; Wegner, K. D.; Ribeiro, D. S. M.; Melo, A.; Häusler, I.; Santos, J. L. M.; Resch-Genger, U. Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control. Nano Res. 2020, 13, 2438–2450.

5

Stroyuk, O.; Raevskaya, A.; Gaponik, N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 2018, 47, 5354–5422.

6

Chen, B. K.; Zhong, H. Z.; Zhang, W. Q.; Tan, Z. A.; Li, Y. F.; Yu, C. R.; Zhai, T. Y.; Bando, Y.; Yang, S. Y.; Zou, B. S. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 2012, 22, 2081–2088.

7

Wang, L. J.; Guan, Z. Y.; Tang, A. W. Multinary copper-based chalcogenide semiconductor nanocrystals: Synthesis and applications in light-emitting diodes and bioimaging. J. Nanopart. Res. 2020, 22, 28.

8

Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.

9

Jiao, M. X.; Huang, X. D.; Ma, L. Z.; Li, Y.; Zhang, P. S.; Wei, X. J.; Jing, L. H.; Luo, X. L.; Rogach, A. L.; Gao, M. Y. Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission via aqueous based synthesis. Chem. Commun. 2019, 55, 15053–15056.

10

Liu, X. Y.; Zhang, G. Z.; Chen, H.; Li, H. W.; Jiang, J.; Long, Y. T.; Ning, Z. J. Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Res. 2018, 11, 1379–1388.

11

McHugh, K. J.; Jing, L. H.; Behrens, A. M.; Jayawardena, S.; Tang, W.; Gao, M. Y.; Langer, R.; Jaklenec, A. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater. 2018, 30, 1706356.

12

Jiao, M. X.; Zhang, P. S.; Meng, J. L.; Li, Y. Y.; Liu, C. Y.; Luo, X. L.; Gao, M. Y. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater. Sci. 2018, 6, 726–745.

13

Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.

14

Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953.

15

Ning, J. J.; Xiong, Y.; Huang, F.; Duan, Z. H.; Kershaw, S. V.; Rogach, A. L. Growth of multinary copper-based sulfide shells on CuInSe2 nanocrystals for significant improvement of their near-infrared emission. Chem. Mater. 2020, 32, 7842–7849.

16

Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.

17

Lin, S. X.; Li, J. Z.; Pu, C. D.; Lei, H. R.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824–831.

18

Chen, L. L.; Zhao, L.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Near-infrared-II quantum dots for in vivo imaging and cancer therapy. Small 2022, 18, 2104567.

19

Knowles, K. E.; Hartstein, K. H.; Kilburn, T. B.; Marchioro, A.; Nelson, H. D.; Whitham, P. J.; Gamelin, D. R. Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications. Chem. Rev. 2016, 116, 10820–10851.

20

Kershaw, S. V.; Susha, A. S.; Rogach, A. L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033–3087.

21

Portniagin, A. S.; Ning, J. J.; Wang, S. X.; Li, Z.; Sergeev, A. A.; Kershaw, S. V.; Zhong, X. Y.; Rogach, A. L. Monodisperse CuInS2/CdS and CuInZnS2/CdS core–shell nanorods with a strong near-infrared emission. Adv.Opt.Mater. 2022, 10, 2102590.

22

Zhang, R.; Deng, T.; Wang, J.; Wu, G.; Li, S. R.; Gu, Y. Q.; Deng, D. W. Organic-to-aqueous phase transfer of Zn-Cu-In-Se/ZnS quantum dots with multifunctional multidentate polymer ligands for biomedical optical imaging. New J. Chem. 2017, 41, 5387–5394.

23

Pons, T.; Bouccara, S.; Loriette, V.; Lequeux, N.; Pezet, S.; Fragola, A. In vivo imaging of single tumor cells in fast-flowing bloodstream using near-infrared quantum dots and time-gated imaging. ACS Nano 2019, 13, 3125–3131.

24

Kang, X. J.; Yang, Y. C.; Huang, L. J.; Tao, Y.; Wang, L.; Pan, D. C. Large-scale synthesis of water-soluble CuInSe2/ZnS and AgInSe2/ZnS core/shell quantum dots. Green Chem. 2015, 17, 4482–4488.

25

Wang, J. D.; Ning, H. R.; Wang, J.; Kershaw, S. V.; Jing, L. H.; Xiao, P. Effects of repetitive pressure on the photoluminescence of bare and ZnS-capped CuInS2 quantum dots: Implications for nanoscale stress sensors. ACS Appl.Nano Mater. 2022, 5, 5617–5624.

26

Jiao, M. X.; Li, Y.; Jia, Y. X.; Yang, Z.; Luo, X. L. Aqueously synthesized color-tunable quaternary Cu-In-Zn-S quantum dots for Cu(II) detection via mild and rapid cation exchange. Sens. Actuators B: Chem. 2019, 294, 32–39.

27

Zhang, L. L.; Pan, Z. X.; Wang, W.; Du, J.; Ren, Z. W.; Shen, Q.; Zhong, X. H. Copper deficient Zn-Cu-In-Se quantum dot sensitized solar cells for high efficiency. J. Mater. Chem. A 2017, 5, 21442–21451.

28

Liu, Z. Y.; Guan, Z. Y.; Li, X.; Tang, A. W.; Teng, F. Rational design and synthesis of highly luminescent multinary Cu-In-Zn-S semiconductor nanocrystals with tailored nanostructures. Adv. Opt. Mater. 2020, 8, 1901555.

29

Guo, W. S.; Yang, W. T.; Wang, Y.; Sun, X. L.; Liu, Z. Y.; Zhang, B. B.; Chang, J.; Chen, X. Y. Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Res. 2014, 7, 1581–1591.

30

Zhang, H.; Fang, W. J.; Wang, W. R.; Qian, N. S.; Ji, X. H. Highly efficient Zn-Cu-In-Se quantum dot-sensitized solar cells through surface capping with ascorbic acid. ACS Appl. Mater. Interfaces 2019, 11, 6927–6936.

31

Du, J.; Du, Z. L.; Hu, J. S.; Pan, Z. X.; Shen, Q.; Sun, J. K.; Long, D. H.; Dong, H.; Sun, L. T.; Zhong, X. H. et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 2016, 138, 4201–4209.

32

Guan, Z. Y.; Ye, H. H.; Lv, P. W.; Wang, L. J.; Zhang, J.; Zou, B.; Tang, A. W. The formation process of five-component Cu-In-Zn-Se-S nanocrystals from ternary Cu-In-S and quaternary Cu-In-Se-S nanocrystals via gradually induced synthesis. J. Mater. Chem. C 2021, 9, 8537–8544.

33

Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056.

34

Jain, S.; Bharti, S.; Bhullar, G. K.; Tripathi, S. K. I-III-VI core/shell QDs: Synthesis, characterizations and applications. J. Lumin. 2020, 219, 116912.

35

Qu, S. L.; Yuan, X.; Li, Y.; Li, X. Y.; Zhou, X. J.; Xue, X. G.; Zhang, K. X.; Xu, J.; Yuan, C. L. Aqueous synthesis of composition-tuned defects in CuInSe2 nanocrystals for enhanced visible-light photocatalytic H2 evolution. Nanoscale Adv. 2021, 3, 2334–2342.

36

Jia, Y. X.; Liu, H.; Cai, P.; Liu, X. R.; Wang, L. S.; Ding, L.; Xu, G. Y.; Wang, W.; Jiao, M. X.; Luo, X. L. Near-infrared emitting Cu-In-Se/ZnS core/shell quantum dots: Aqueous synthesis and sulfur source effects. Chem. Commun. 2021, 57, 4178–4181.

37

Jiao, M. X.; Li, Y.; Jia, Y. X.; Li, C. X.; Bian, H.; Gao, L. T.; Cai, P.; Luo, X. L. Strongly emitting and long-lived silver indium sulfide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence. J. Colloid Interface Sci. 2020, 565, 35–42.

38

Sarkar, S.; Karan, N. S.; Pradhan, N. Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters. Angew. Chem., Int. Ed. 2011, 50, 6065–6069.

39

Liu, Z. M.; Tang, A. W.; Liu, J.; Zhu, D. X.; Shi, X. F.; Kong, Q. H.; Wang, Z. J.; Qu, S. C.; Teng, F.; Wang, Z. G. Non-injection synthesis of L-shaped wurtzite Cu-Ga-Zn-S alloyed nanorods and their advantageous application in photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 18649–18659.

40

Zang, H. D.; Li, H. B.; Makarov, N. S.; Velizhanin, K. A.; Wu, K. F.; Park, Y. S.; Klimov, V. I. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett. 2017, 17, 1787–1795.

41

Leach, A. D. P.; Macdonald, J. E. Optoelectronic properties of CuInS2 nanocrystals and their origin. J. Phys. Chem. Lett. 2016, 7, 572–583.

42

Vlaskin, V. A.; Barrows, C. J.; Erickson, C. S.; Gamelin, D. R. Nanocrystal diffusion doping. J. Am. Chem. Soc. 2013, 135, 14380–14389.

43

Bozhko, V. V.; Novosad, O. V.; Parasyuk, O. V.; Vainorius, N.; Sakaviciues, A.; Janonis, V.; Kazukauskas, V.; Chichurin, A. V. Specific features of the low-temperature conductivity and photoconductivity of CuInSe2-ZnIn2Se4 alloys. Semiconductors 2014, 48, 727–732.

44
Madelung, O. Semiconductors:Data Handbook; Springer: Berlin, Germany, 2004.https://doi.org/10.1007/978-3-642-18865-7
DOI
45

Liu, W. Y.; Zhang, Y.; Zhai, W. W.; Wang, Y. H.; Zhang, T. Q.; Gu, P. F.; Chu, H. R.; Zhang, H. Z.; Cui, T.; Wang, Y. D. et al. Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots. J. Phys. Chem. C 2013, 117, 19288–19294.

46

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

47

Gao, N.; Zhang, R. B.; Chen, B. K.; Zhang, J. F.; Zhang, X. L.; Rogach, A. L. Template synthesis of silver indium sulfide based nanocrystals performed through cation exchange in organic and aqueous media. Nano Res. 2021, 14, 2321–2329.

48

Ding, K.; Jing, L. H.; Liu, C. Y.; Hou, Y.; Gao, M. Y. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials 2014, 35, 1608–1617.

49

Li, J. H.; Jiang, X. Q.; Li, H. J.; Gelinsky, M.; Gu, Z. Tailoring materials for modulation of macrophage fate. Adv. Mater. 2021, 33, 2004172.

50

Hao, X. X.; Li, C. Y.; Zhang, Y. J.; Wang, H. Z.; Chen, G. C.; Wang, M.; Wang, Q. B. Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1804437.

51

Li, L. Y.; Hou, J. J.; Liu, X. J.; Guo, Y. J.; Wu, Y.; Zhang, L. H.; Yang, Z. J. Nucleolin-targeting liposomes guided by Aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 2014, 35, 3840–3850.

52

Pan, W.; Liu, B.; Gao, X. N.; Yu, Z. Z.; Liu, X. H.; Li, N.; Tang, B. A graphene-based fluorescent nanoprobe for simultaneous monitoring of miRNA and mRNA in living cells. Nanoscale 2018, 10, 14264–14271.

53

He, S. J.; Song, B.; Li, D.; Zhu, C. F.; Qi, W. P.; Wen, Y. Q.; Wang, L. H.; Song, S. P.; Fang, H. P.; Fan, C. H. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010, 20, 453–459.

File
12274_2022_4426_MOESM1_ESM.pdf (997.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2022
Revised: 08 April 2022
Accepted: 12 April 2022
Published: 31 May 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgement

The authors thank the financial support from the National Key Research and Development Program of China (No. 2018YFA0208800), the National Natural Science Foundation of China (NSFC) (Nos. 22177115, 81671755, and 21802083), the Youth Innovation Promotion Association CAS (No. 2018042), the Taishan Scholar Program of Shandong Province of China (No. ts20110829), and Cancer Prevention & Research Institute of Texas (No. RR190056).

Return