Journal Home > Volume 15 , Issue 9

Semiconducting single-walled carbon nanotubes (s-SWCNTs) are fascinating materials for future electronic and optical applications. Conjugated polymer wrapping is one of the most promising methods for mass production of high purity s-SWCNTs. However, its chiral selectivity is relatively inferior to other s-SWCNT production methods. In this paper, the chiral selectivity of two polymers, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6′-{2,2′-bipyridine})] (PFO-BPy) and poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl] (PCz), which are representatives of widely used polyfluorene and polycarbazole families, respectively, were comparatively studied. Both polymers exhibited high selectivity for a subset of existing chiral species in each of the commercially available raw SWCNT materials (CoMoCAT, HiPco, and arc-discharge) which cover a diameter range of 0.6–1.8 nm. Less chiral species were selected by PFO-BPy from small diameter (< 1 nm) raw SWCNT materials, while more from large diameter (> 1.2 nm) raw materials. High chiral purity (6, 5) (> 99%) and (7, 5) (> 75%) solutions were extracted by PFO-BPy and PCz from CoMoCAT materials, respectively. The different chiral angle and diameter selections for different raw materials by both polymers were ascribed to their different geometrical structures and related polymer-tube interactions. Our work provides indispensable information for better understanding the mechanism of polymer wrapping method and improving extraction of single chirality s-SWCNTs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Comparative study of the extraction selectivity of PFO-BPy and PCz for small to large diameter single-walled carbon nanotubes

Show Author's information Fang Liu1,2Xingxing Chen1,2Meiqi Xi1,2Nan Wei1,2Lan Bai1,2,3,4Lianmao Peng1,2,3,4Yu Cao1,2,3,4( )Xuelei Liang1,2,3,4( )
Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
Shanxi Institute for Carbon-Based Thin Film Electronics, Peking University (SICTFE-PKU), Taiyuan 030012, China
Taiyuan Laboratory for Carbon-Based Thin Film Electronics, Taiyuan 030012, China

Abstract

Semiconducting single-walled carbon nanotubes (s-SWCNTs) are fascinating materials for future electronic and optical applications. Conjugated polymer wrapping is one of the most promising methods for mass production of high purity s-SWCNTs. However, its chiral selectivity is relatively inferior to other s-SWCNT production methods. In this paper, the chiral selectivity of two polymers, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6′-{2,2′-bipyridine})] (PFO-BPy) and poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl] (PCz), which are representatives of widely used polyfluorene and polycarbazole families, respectively, were comparatively studied. Both polymers exhibited high selectivity for a subset of existing chiral species in each of the commercially available raw SWCNT materials (CoMoCAT, HiPco, and arc-discharge) which cover a diameter range of 0.6–1.8 nm. Less chiral species were selected by PFO-BPy from small diameter (< 1 nm) raw SWCNT materials, while more from large diameter (> 1.2 nm) raw materials. High chiral purity (6, 5) (> 99%) and (7, 5) (> 75%) solutions were extracted by PFO-BPy and PCz from CoMoCAT materials, respectively. The different chiral angle and diameter selections for different raw materials by both polymers were ascribed to their different geometrical structures and related polymer-tube interactions. Our work provides indispensable information for better understanding the mechanism of polymer wrapping method and improving extraction of single chirality s-SWCNTs.

Keywords: carbon nanotube, polymer wrapping, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6′-{2,2′-bipyridine})] (PFO-BPy), poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl] (PCz), chiral selectivity

References(43)

1
Saito, R. ; Dresselhaus, G. ; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.
2

Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

3

Diao, S.; Hong, G. S.; Robinson, J. T.; Jiao, L. Y.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Chirality enriched (12, 1) and (11, 3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc. 2012, 134, 16971–16974.

4

He, X. W.; Hartmann, N. F.; Ma, X. D.; Kim, Y.; Ihly, R.; Blackburn, J. L.; Gao, W. L.; Kono, J.; Yomogida, Y.; Hirano, A. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 2017, 11, 577–582.

5

Liang, X. L.; Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Peng, L. M. Carbon nanotube thin film transistors for flat panel display application. Top. Curr. Chem. (Cham) 2016, 374, 80.

6

Jain, R. M.; Howden, R.; Tvrdy, K.; Shimizu, S.; Hilmer, A. J.; McNicholas, T. P.; Gleason, K. K.; Strano, M. S. Polymer-free near-infrared photovoltaics with single chirality (6, 5) semiconducting carbon nanotube active layers. Adv. Mater. 2012, 24, 4436–4439.

7

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

8

Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

9

Yang, D. H.; Li, L. H.; Wei, X. J.; Wang, Y. C.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.

10

Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.

11

Khripin, C. Y.; Fagan, J. A.; Zheng, M. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J. Am. Chem. Soc. 2013, 135, 6822–6825.

12

Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541.

13

Wang, H. L.; Bao, Z. N. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10, 737–758.

14

Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, 1800750.

15

Brady, G. J.; Joo, Y.; Wu, M. Y.; Shea, M. J.; Gopalan, P.; Arnold, M. S. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 2014, 8, 11614–11621.

16

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

17

Liu, F.; Chen, X. X.; Liu, H. M.; Zhao, J.; Xi, M. Q.; Xiao, H. S.; Lu, T. K.; Cao, Y.; Li, Y.; Peng, L. M. et al. High-yield and low-cost separation of high-purity semiconducting single-walled carbon nanotubes with closed-loop recycling of raw materials and solvents. Nano Res. 2021, 14, 4281–4287.

18

Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

19

Stürzl, N.; Hennrich, F.; Lebedkin, S.; Kappes, M. M. Near monochiral single-walled carbon nanotube dispersions in organic solvents. J. Phys. Chem. C 2009, 113, 14628–14632.

20

Graf, A.; Zakharko, Y.; Schiessl, S. P.; Backes, C.; Pfohl, M.; Flavel, B. S.; Zaumseil, J. Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 2016, 105, 593–599.

21

Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G. P. et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6, 2328–2339.

22

Wang, H. L.; Koleilat, G. I.; Liu, P.; Jiménez-Osés, G.; Lai, Y. C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K. N.; Bao, Z. N. High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. ACS Nano 2014, 8, 2609–2617.

23

Wang, H. L.; Mei, J. G.; Liu, P.; Schmidt, K.; Jiménez-Osés, G.; Osuna, S.; Fang, L.; Tassone, C. J.; Zoombelt, A. P.; Sokolov, A. N. et al. Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors. ACS Nano 2013, 7, 2659–2668.

24

Lemasson, F.; Berton, N.; Tittmann, J.; Hennrich, F.; Kappes, M. M.; Mayor, M. Polymer library comprising fluorene and carbazole homo- and copolymers for selective single-walled carbon nanotubes extraction. Macromolecules 2012, 45, 713–722.

25

Jakubka, F.; Schießl, S. P.; Martin, S.; Englert, J. M.; Hauke, F.; Hirsch, A.; Zaumseil, J. Effect of polymer molecular weight and solution parameters on selective dispersion of single-walled carbon nanotubes. ACS Macro Lett. 2012, 1, 815–819.

26

Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 2016, 12, 4993–4999.

27

Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.

28

Jinkins, K. R.; Foradori, S. M.; Saraswat, V.; Jacobberger, R. M.; Dwyer, J. H.; Gopalan, P.; Berson, A.; Arnold, M. S. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics. Sci. Adv. 2021, 7, eabh0640.

29

Hiroaki, O.; Natsuko, I.; Tsuyohiko, F.; Yasuro, N.; Naotoshi, N. One-pot separation of highly enriched (6, 5)-single-walled carbon nanotubes using a fluorene-based copolymer. Chem. Lett. 2011, 40, 239–241.

30

Rice, N. A.; Adronov, A. Selective interactions of a high-molecular-weight polycarbazole with different commercial nanotube samples. J. Polym. Sci. Pol. Chem. 2014, 52, 2738–2747.

31
32
33

O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.

34

Wei, N.; Tian, Y.; Liao, Y. P.; Komatsu, N.; Gao, W. L.; Lyuleeva-Husemann, A.; Zhang, Q.; Hussain, A.; Ding, E. X.; Yao, F. R. et al. Colors of single-wall carbon nanotubes. Adv. Mater. 2021, 33, 2006395.

35

Wei, X. J.; Tanaka, T.; Yomogida, Y.; Sato, N.; Saito, R.; Kataura, H. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat. Commun. 2016, 7, 12899.

36

Zhao, P.; Einarsson, E.; Xiang, R.; Murakami, Y.; Maruyama, S. Controllable expansion of single-walled carbon nanotube dispersions using density gradient ultracentrifugation. J. Phys. Chem. C 2010, 114, 4831–4834.

37

Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.

38

Tian, Y.; Jiang, H.; Pfaler, J. V.; Zhu, Z.; Nasibulin, A. G.; Nikitin, T.; Aitchison, B.; Khriachtchev, L.; Brown, D. P.; Kauppinen, E. I. Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J. Phys. Chem. Lett. 2010, 1, 1143–1148.

39

Ding, E. X.; Zhang, Q.; Wei, N.; Khan, A. T.; Kauppinen, E. I. High-performance single-walled carbon nanotube transparent conducting film fabricated by using low feeding rate of ethanol solution. Roy. Soc. Open Sci. 2018, 5, 180392.

40
Wei, X. J.; Li, S. L.; Wang, W. K.; Zhang, X.; Zhou, W. Y.; Xie, S. S.; Liu, H. P. Recent advances in structure separation of single-wall carbon nanotubes and their application in optics, electronics, and optoelectronics. Adv. Sci., in press, https://doi.org/10.1002/advs.202200054.
41

Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231–2239.

42

Lemasson, F. A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M. M.; Mayor, M. Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole). J. Am. Chem. Soc. 2011, 133, 652–655.

43

Joo, Y.; Brady, G. J.; Shea, M. J.; Oviedo, M. B.; Kanimozhi, C.; Schmitt, S. K.; Wong, B. M.; Arnold, M. S.; Gopalan, P. Isolation of pristine electronics grade semiconducting carbon nanotubes by switching the rigidity of the wrapping polymer backbone on demand. ACS Nano 2015, 9, 10203–10213.

File
12274_2022_4425_MOESM1_ESM.pdf (958.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 February 2022
Revised: 06 April 2022
Accepted: 12 April 2022
Published: 08 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U21A6004 and 51991341), Science and Technology Major Project of Shanxi (No. 202101030201022), and Young Talents Program of Beijing (No. 2018000020028G349). We thank Prof. X. J. Wei for helpful discussion.

Return