Journal Home > Volume 15 , Issue 9

The properties of near-field optics have always been the focus of nano-measurement technology. The 11th order effective near-field optical signal with an incident laser wavelength of 1,550 nm is obtained using a platinum-coated optical probe (Pt–Si probe). The experimental results show that the local electric field intensity of the Pt–Si probe is nearly 30 times higher than that of silicon probe (Si probe). Therefore, the highest 7th order near-field optical imaging results are obtained with the Pt–Si probe. Further, near-field optical imaging is performed on samples such as gold grids and carbon nanotubes using the Pt–Si probe. The measurement results show that the high-order signal has the characteristics of less background, higher signal-to-noise ratio, and resolution up to 5.7 nm.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High resolution and high signal-to-noise ratio imaging with near-field high-order optical signals

Show Author's information Fei Wang1,2Shuming Yang1,2( )Shaobo Li1,2Shuhao Zhao1,2Biyao Cheng1,2Chengsheng Xia1,2
State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The properties of near-field optics have always been the focus of nano-measurement technology. The 11th order effective near-field optical signal with an incident laser wavelength of 1,550 nm is obtained using a platinum-coated optical probe (Pt–Si probe). The experimental results show that the local electric field intensity of the Pt–Si probe is nearly 30 times higher than that of silicon probe (Si probe). Therefore, the highest 7th order near-field optical imaging results are obtained with the Pt–Si probe. Further, near-field optical imaging is performed on samples such as gold grids and carbon nanotubes using the Pt–Si probe. The measurement results show that the high-order signal has the characteristics of less background, higher signal-to-noise ratio, and resolution up to 5.7 nm.

Keywords: high resolution, optical probe, high-order optical signal, local electric field enhancement

References(32)

1

Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 2002, 418, 159–162.

2

Nuño, Z.; Hessler, B.; Ochoa, J.; Shon, Y. S.; Bonney, C.; Abate, Y. Nanoscale subsurface- and material-specific identification of single nanoparticles. Opt. Express 2011, 19, 20865–20875.

3

Qiao, Z.; Xue, M. F.; Zhao, Y. Q.; Huang, Y. D.; Zhang, M.; Chang, C.; Chen, J. N. Infrared nanoimaging of nanoscale sliding dislocation of collagen fibrils. Nano Res. 2022, 15, 2355–2361.

4

Virmani, D.; Bylinkin, A.; Dolado, I.; Janzen, E.; Edgar, J. H.; Hillenbrand, R. Amplitude- and phase-resolved infrared nanoimaging and nanospectroscopy of polaritons in a liquid environment. Nano Lett. 2021, 21, 1360–1367.

5

Wang, X.; Huang, S. C.; Huang, T. X.; Su, H. S.; Zhong, J. H.; Zeng, Z. C.; Li, M. H.; Ren, B. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 2017, 46, 4020–4041.

6

Schnell, M.; Goikoetxea, M.; Amenabar, I.; Carney, P. S.; Hillenbrand, R. Rapid infrared spectroscopic nanoimaging with nano-FTIR holography. ACS Photonics 2020, 7, 2878–2885.

7

Möslein, A. F.; Gutiérrez, M.; Cohen, B.; Tan, J. C. Near-field infrared nanospectroscopy reveals guest confinement in metal–organic framework single crystals. Nano Lett. 2020, 20, 7446–7454.

8

Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.

9

Zhen, X.; Pu, K. Y. Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. Nano Res. 2018, 11, 5258–5280.

10

Senichev, A.; Corfdir, P.; Brandt, O.; Ramsteiner, M.; Breuer, S.; Schilling, J.; Geelhaar, L.; Werner, P. Electronic properties of wurtzite GaAs: A correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire. Nano Res. 2018, 11, 4708–4721.

11

Aubert, S.; Bruyant, A.; Blaize, S.; Bachelot, R.; Lerondel, G.; Hudlet, S.; Royer, P. Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy. J. Opt. Soc. Am. B 2003, 20, 2117–2124.

12

Taminiau, T. H.; Moerland, R. J.; Segerink, F. B.; Kuipers, L.; Van Hulst, N. F. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 2007, 7, 28–33.

13

Sanz-Paz, M.; Ernandes, C.; Esparza, J. U.; Burr, G. W.; Van Hulst, N. F.; Maitre, A.; Aigouy, L.; Gacoin, T.; Bonod, N.; Garcia-Parajo, M. F. et al. Enhancing magnetic light emission with all-dielectric optical nanoantennas. Nano Lett. 2018, 18, 3481–3487.

14

Umakoshi, T.; Saito, Y.; Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 2016, 8, 5634–5640.

15

Hou, Y. P.; Ma, C. F.; Wang, W. T.; Chen, Y. H. A dual-use probe for nano-metric photoelectric characterization using a confined light field generated by photonic crystals in the cantilever. Nano Res. 2021, 14, 3848–3853.

16

Tugchin, B. N.; Janunts, N.; Klein, A. E.; Steinert, M.; Fasold, S.; Diziain, S.; Sison, M.; Kley, E. B.; Tünnermann, A.; Pertsch, T. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2015, 2, 1468–1475.

17

Li, S. B.; Yang, S. M.; Wang, F.; Liu, Q.; Cheng, B. Y.; Rosenwaks, Y. Plasmonic interference modulation for broadband nanofocusing. Nanophotonics 2021, 10, 4113–4123.

18

Chen, X. Z.; Liu, X.; Guo, X. D.; Chen, S.; Hu, H.; Nikulina, E.; Ye, X. L.; Yao, Z. H.; Bechtel, H. A.; Martin, M. C. et al. THz near-field imaging of extreme subwavelength metal structures. ACS Photonics 2020, 7, 687–694.

19

Maissen, C.; Chen, S.; Nikulina, E.; Govyadinov, A.; Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photonics 2019, 6, 1279–1288.

20

Mastel, S.; Govyadinov, A. A.; Maissen, C.; Chuvilin, A.; Berger, A.; Hillenbrand, R. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photonics 2018, 5, 3372–3378.

21

Bylinkin, A.; Schnell, M.; Autore, M.; Calavalle, F.; Li, P. N.; Taboada-Gutièrrez, J.; Liu, S.; Edgar, J. H.; Casanova, F.; Hueso, L. E. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photonics 2021, 15, 197–202.

22

Hillenbrand, R.; Keilmann, F. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 2000, 85, 3029–3032.

23

HillenbRand, R.; Knoll, B.; Keilmann, F. Pure optical contrast in scattering-type scanning near-field microscopy. J. Microscopy 2001, 202, 77–83.

24

Wurtz, G.; Bachelot, R.; Royer, P. Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy. Eur. Phys. J. Appl. Phys. 1999, 5, 269–275.

25

Mastel, S.; Lundeberg, M. B.; Alonso-González, P.; Gao, Y. D.; Watanabe, K.; Taniguchi, T.; Hone, J.; Koppens, F. H. L.; Nikitin, A. Y.; Hillenbrand, R. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Lett. 2017, 17, 6526–6533.

26

Zenhausern, F.; Martin, Y.; Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution. Science 1995, 269, 1083–1085.

27

Knoll, B.; Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 1999, 399, 134–137.

28

Averbukh, I. S.; Chernobrod, B. M.; Sedletsky, O. A.; Prior, Y. Coherent near field optical microscopy. Opt. Commun. 2000, 174, 33–41.

29

Nörenberg, T.; Wehmeier, L.; Lang, D.; Kehr, S. C.; Eng, L. M. Compensating for artifacts in scanning near-field optical microscopy due to electrostatics. APL Photonics 2021, 6, 036102.

30

Den Boef, A. J. The influence of lateral forces in scanning force microscopy. Rev. Sci. Instrum. 1991, 62, 88–92.

31

Levitsky, I. A.; Euler, W. B. Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination. Appl. Phys. Lett. 2003, 83, 1857–1859.

32

Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86–92.

File
12274_2022_4422_MOESM1_ESM.pdf (451 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2022
Revised: 11 April 2022
Accepted: 12 April 2022
Published: 31 May 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors would like to acknowledge the National Key Research and Development Program of China (No. 2021YFF0700402), the Program for Science and Technology Innovation Group of Shaanxi Province (No. 2019TD-011), the Key Research and Development Program of Shaanxi Province (No. 2020DLGY04-02), and the Fundamental Research Funds for the Central Universities for their support.

Return