Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nano-dynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce “DyeCycling”, a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range.
Hellenkamp, B.; Schmid, S.; Doroshenko, O.; Opanasyuk, O.; Kühnemuth, R.; Adariani, S. R.; Ambrose, B.; Aznauryan, M.; Barth, A.; Birkedal, V. et al. Precision and accuracy of single-molecule FRET measurements—A multi-laboratory benchmark study. Nat. Methods 2018, 15, 669–676.
Lerner, E.; Cordes, T.; Ingargiola, A.; Alhadid, Y.; Chung, S.; Michalet, X.; Weiss, S. Toward dynamic structural biology: Two decades of single-molecule förster resonance energy transfer. Science 2018, 359, eaan1133.
Lerner, E.; Barth, A.; Hendrix, J.; Ambrose, B.; Birkedal, V.; Blanchard, S. C.; Börner, R.; Chung, H. S.; Cordes, T.; Craggs, T. D. et al. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021, 10, e60416.
Hohng, S.; Wilson, T. J.; Tan, E.; Clegg, R. M.; Lilley, D. M. J.; Ha, T. Conformational flexibility of four-way junctions in RNA. J. Mol. Biol. 2004, 336, 69–79.
Joo, C.; McKinney, S. A.; Nakamura, M.; Rasnik, I.; Myong, S.; Ha, T. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 2006, 126, 515–527.
Feldman, M. B.; Terry, D. S.; Altman, R. B.; Blanchard, S. C. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat. Chem. Biol. 2010, 6, 54–62.
Ruer, M.; Krainer, G.; Gröger, P.; Schlierf, M. ATPase and protease domain movements in the bacterial AAA+ protease FtsH are driven by thermal fluctuations. J. Mol. Biol. 2018, 430, 4592–4602.
Kilic, S.; Felekyan, S.; Doroshenko, O.; Boichenko, I.; Dimura, M.; Vardanyan, H.; Bryan, L. C.; Arya, G.; Seidel, C. A. M.; Fierz, B. Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. Nat. Commun. 2018, 9, 235.
Zosel, F.; Mercadante, D.; Nettels, D.; Schuler, B. A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nat. Commun. 2018, 9, 3332.
Choi, J.; Marks, J.; Zhang, J. J.; Chen, D. H.; Wang, J. F.; Vázquez-Laslop, N.; Mankin, A. S.; Puglisi, J. D. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Nat. Chem. Biol. 2020, 16, 310–317.
Schmid, S.; Hugel, T. Controlling protein function by fine-tuning conformational flexibility. eLife 2020, 9, e57180.
Bauer, B. W.; Davidson, I. F.; Canena, D.; Wutz, G.; Tang, W.; Litos, G.; Horn, S.; Hinterdorfer, P.; Peters, J. M. Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism. Cell 2021, 184, 5448–5464.
Mazumder, A.; Wang, A. N.; Uhm, H.; Ebright, R. H.; Kapanidis, A. N. RNA polymerase clamp conformational dynamics: Long-lived states and modulation by crowding, cations, and nonspecific DNA binding. Nucleic Acids Res. 2021, 49, 2790–2802.
Teilum, K.; Olsen, J. G.; Kragelund, B. B. Functional aspects of protein flexibility. Cell. Mol. Life Sci. 2009, 66, 2231–2247.
Burley, S. K.; Bhikadiya, C.; Bi, C. X.; Bittrich, S.; Chen, L.; Crichlow, G. V.; Duarte, J. M.; Dutta, S.; Fayazi, M.; Feng, Z. K. et al. RCSB protein data bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci. 2022, 31, 187–208.
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589.
Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A. et al. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444.
Vallat, B.; Webb, B.; Westbrook, J. D.; Sali, A.; Berman, H. M. Development of a prototype system for archiving integrative/hybrid structure models of biological macromolecules. Structure 2018, 26, 894–904.
Henzler-Wildman, K. A.; Lei, M.; Thai, V.; Kerns, S. J.; Karplus, M.; Kern, D. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 2007, 450, 913–916.
Hellenkamp, B.; Wortmann, P.; Kandzia, F.; Zacharias, M.; Hugel, T. Multidomain structure and correlated dynamics determined by self-consistent FRET networks. Nat. Methods 2017, 14, 174–180.
Geeves, M. A.; Holmes, K. C. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 1999, 68, 687–728.
Kodera, N.; Yamamoto, D.; Ishikawa, R.; Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 2010, 468, 72–76.
Ernst, O. P.; Lodowski, D. T.; Elstner, M.; Hegemann, P.; Brown, L. S.; Kandori, H. Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem. Rev. 2014, 114, 126–163.
Fields, R. D.; Burnstock, G. Purinergic signalling in neuron–glia interactions. Nat. Rev. Neurosci. 2006, 7, 423–436.
Henzler-Wildman, K.; Kern, D. Dynamic personalities of proteins. Nature 2007, 450, 964–972.
Ode, H.; Nakashima, M.; Kitamura, S.; Sugiura, W.; Sato, H. Molecular dynamics simulation in virus research. Front. Microbiol. 2012, 3, 258.
Mitra, K.; Frank, J. Ribosome dynamics: Insights from atomic structure modeling into cryo-electron microscopy maps. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 299–317.
Tan, J. Z.; Verschueren, K. H. G.; Anand, K.; Shen, J. H.; Yang, M. J.; Xu, Y. C.; Rao, Z. H.; Bigalke, J.; Heisen, B.; Mesters, J. R. et al. pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: Molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol. 2005, 354, 25–40.
Santoso, Y.; Joyce, C. M.; Potapova, O.; Le Reste, L.; Hohlbein, J.; Torella, J. P.; Grindley, N. D. F.; Kapanidis, A. N. Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc. Natl. Acad. Sci. USA 2010, 107, 715–720.
Nüesch, M. F.; Ivanović, M. T.; Claude, J. B.; Nettels, D.; Best, R. B.; Wenger, J.; Schuler, B. Single-molecule detection of ultrafast biomolecular dynamics with nanophotonics. J. Am. Chem. Soc. 2022, 144, 52–56.
McKinney, S. A.; Joo, C.; Ha, T. Analysis of single-molecule FRET trajectories using hidden markov modeling. Biophys. J. 2006, 91, 1941–1951.
Schmid, S.; Götz, M.; Hugel, T. Single-molecule analysis beyond dwell times: Demonstration and assessment in and out of equilibrium. Biophys. J. 2016, 111, 1375–1384.
Miller, H.; Zhou, Z. K.; Shepherd, J.; Wollman, A. J. M.; Leake, M. C. Single-molecule techniques in biophysics: A review of the progress in methods and applications. Rep. Prog. Phys. 2018, 81, 024601.
Okumus, B.; Wilson, T. J.; Lilley, D. M. J.; Ha, T. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J. 2004, 87, 2798–2806.
Ha, T.; Tinnefeld, P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 2012, 63, 595–617.
Schmid, S.; Hugel, T. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties. J. Chem. Phys. 2018, 148, 123312.
Nettels, D.; Hoffmann, A.; Schuler, B. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds. J. Phys. Chem. B 2008, 112, 6137–6146.
Juette, M. F.; Terry, D. S.; Wasserman, M. R.; Altman, R. B.; Zhou, Z.; Zhao, H.; Blanchard, S. C. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 2016, 13, 341–344.
Zheng, Q. S.; Juette, M. F.; Jockusch, S.; Wasserman, M. R.; Zhou, Z.; Altman, R. B.; Blanchard, S. C. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 2014, 43, 1044–1056.
Zheng, Q. S.; Lavis, L. D. Development of photostable fluorophores for molecular imaging. Curr. Opin. Chem. Biol. 2017, 39, 32–38.
Isselstein, M.; Zhang, L.; Glembockyte, V.; Brix, O.; Cosa, G.; Tinnefeld, P.; Cordes, T. Self-healing dyes-keeping the promise. J. Phys. Chem. Lett. 2020, 11, 4462–4480.
Grimm, J. B.; Xie, L. Q.; Casler, J. C.; Patel, R.; Tkachuk, A. N.; Falco, N.; Choi, H.; Lippincott-Schwartz, J.; Brown, T. A.; Glick, B. S. et al. A general method to improve fluorophores using deuterated auxochromes. JACS Au 2021, 1, 690–696.
Smit, J. H.; Van Der Velde, J. H. M.; Huang, J. Y.; Trauschke, V.; Henrikus, S. S.; Chen, S.; Eleftheriadis, N.; Warszawik, E. M.; Herrmann, A.; Cordes, T. On the impact of competing intra- and intermolecular triplet-state quenching on photobleaching and photoswitching kinetics of organic fluorophores. Phys. Chem. Chem. Phys. 2019, 21, 3721–3733.
Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G. The energy landscapes and motions of proteins. Science 1991, 254, 1598–1603.
Hyeon, C.; Lee, J.; Yoon, J.; Hohng, S.; Thirumalai, D. Hidden complexity in the isomerization dynamics of Holliday junctions. Nat. Chem. 2012, 4, 907–914.
Liu, B.; Baskin, R. J.; Kowalczykowski, S. C. DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate. Nature 2013, 500, 482–485.
Zhuang, X. W.; Kim, H.; Pereira, M. J. B.; Babcock, H. P.; Walter, N. G.; Chu, S. Correlating structural dynamics and function in single ribozyme molecules. Science 2002, 296, 1473–1476.
Solomatin, S. V.; Greenfeld, M.; Chu, S.; Herschlag, D. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 2010, 463, 681–684.
Ditzler, M. A.; Rueda, D.; Mo, J. J.; Håkansson, K.; Walter, N. G. A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res. 2008, 36, 7088–7099.
Sharonov, A.; Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 2006, 103, 18911–18916.
Jungmann, R.; Steinhauer, C.; Scheible, M.; Kuzyk, A.; Tinnefeld, P.; Simmel, F. C. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 2010, 10, 4756–4761.
Auer, A.; Strauss, M. T.; Schlichthaerle, T.; Jungmann, R. Fast, background-free DNA-PAINT imaging using FRET-based probes. Nano Lett. 2017, 17, 6428–6434.
Filius, M.; Kim, S. H.; Severins, I.; Joo, C. High-resolution single-molecule FRET via DNA eXchange (FRET X). Nano Lett. 2021, 21, 3295–3301.
Stehr, F.; Stein, J.; Bauer, J.; Niederauer, C.; Jungmann, R.; Ganzinger, K.; Schwille, P. Tracking single particles for hours via continuous DNA-mediated fluorophore exchange. Nat. Commun. 2021, 12, 4432.
Dupuis, N. F.; Holmstrom, E. D.; Nesbitt, D. J. Single-molecule kinetics reveal cation-promoted DNA duplex formation through ordering of single-stranded helices. Biophys. J. 2013, 105, 756–766.
Ouldridge, T. E.; Šulc, P.; Romano, F.; Doye, J. P. K.; Louis, A. A. DNA hybridization kinetics: zippering, internal displacement and sequence dependence. Nucleic Acids Res. 2013, 418886, 8886–8895.
Swenson, C. S.; Lackey, H. H.; Reece, E. J.; Harris, J. M.; Heemstra, J. M.; Peterson, E. M. Evaluating the effect of ionic strength on PNA: DNA duplex formation kinetics. RSC Chem. Biol. 2021, 2, 1249–1256.
Schueder, F.; Stein, J.; Stehr, F.; Auer, A.; Sperl, B.; Strauss, M. T.; Schwille, P.; Jungmann, R. An order of magnitude faster DNA-PAINT imaging by optimized sequence design and buffer conditions. Nat. Methods 2019, 16, 1101–1104.
Andrews, R. DNA hybridisation kinetics using single-molecule fluorescence imaging. Essays Biochem. 2021, 65, 27–36.
Madsen, M.; Gothelf, K. V. Chemistries for DNA nanotechnology. Chem. Rev. 2019, 119, 6384–6458.
Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim, S. K.; Norden, B.; Nielsen, P. E. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 1993, 365, 566–568.
Saarbach, J.; Sabale, P. M.; Winssinger, N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr. Opin. Chem. Biol. 2019, 52, 112–124.
Gavins, G. C.; Gröger, K.; Bartoschek, M. D.; Wolf, P.; Beck-Sickinger, A. G.; Bultmann, S.; Seitz, O. Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins. Nat. Chem. 2021, 13, 15–23.
Wiita, A. P.; Ainavarapu, S. R. K.; Huang, H. H.; Fernandez, J. M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. USA 2006, 103, 7222–7227.
Vincent, S.; Subramanian, S.; Vollmer, F. Optoplasmonic characterisation of reversible disulfide interactions at single thiol sites in the attomolar regime. Nat. Commun. 2020, 11, 2043.
Lotze, J. ; Reinhardt, U. ; Seitz, O. ; Beck-Sickinger, A. G. Peptide-tags for site-specific protein labelling in vitro and in vivo. Mol. Biosyst. 2016, 12, 1731–1745.
Knecht, S.; Ricklin, D.; Eberle, A. N.; Ernst, B. Oligohis-tags: Mechanisms of binding to Ni2+-NTA surfaces. J. Mol. Recognit. 2009, 22, 270–279.
Day, J. W.; Kim, C. H.; Smider, V. V.; Schultz, P. G. Identification of metal ion binding peptides containing unnatural amino acids by phage display. Bioorganic Med. Chem. Lett. 2013, 23, 2598–2600.
Ryu, Y. ; Schultz, P. G. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat. Methods 2006, 3, 263–265.
Koehler, C.; Sauter, P. F.; Wawryszyn, M.; Girona, G. E.; Gupta, K.; Landry, J. J. M.; Fritz, M. H. Y.; Radic, K.; Hoffmann, J. E.; Chen, Z. A. et al. Genetic code expansion for multiprotein complex engineering. Nat. Methods 2016, 13, 997–1000.
Scinto, S. L.; Bilodeau, D. A.; Hincapie, R.; Lee, W.; Nguyen, S. S.; Xu, M. H.; am Ende, C. W.; Finn, M. G.; Lang, K.; Lin, Q. et al. Bioorthogonal chemistry. Nat. Rev. Methods Prim. 2021, 1, 30.
Sindbert, S.; Kalinin, S.; Nguyen, H.; Kienzler, A.; Clima, L.; Bannwarth, W.; Appel, B.; Müller, S.; Seidel, C. A. M. Accurate distance determination of nucleic acids via förster resonance energy transfer: Implications of dye linker length and rigidity. J. Am. Chem. Soc. 2011, 133, 2463–2480.
Roy, R.; Hohng, S.; Ha, T. A practical guide to single-molecule FRET. Nat. Methods 2008, 5, 507–516.
Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B. et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138.
Levene, H. J.; Korlach, J.; Turner, S. W.; Foquet, M.; Craighead, H. G.; Webb, W. W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 2003, 299, 682–686.
Klughammer, N.; Dekker, C. Palladium zero-mode waveguides for optical single-molecule detection with nanopores. Nanotechnology 2021, 32, 18LT01.
Jeffet, J.; Ionescu, A.; Michaeli, Y.; Torchinsky, D.; Perlson, E.; Craggs, T. D.; Ebenstein, Y. Multimodal single-molecule microscopy with continuously controlled spectral resolution. Biophys. Rep. 2021, 1, 100013.
Farhangdoust, F.; Cheng, F.; Liang, W. T.; Liu, Y. M.; Wanunu, M. Rapid identification of DNA fragments through direct sequencing with electro-optical zero-mode waveguides. Adv. Mater. 2022, 34, e2108479.
McKinney, S. A.; Déclais, A. C.; Lilley, D. M. J.; Ha, T. Structural dynamics of individual Holliday junctions. Nat. Struct. Biol. 2003, 10, 93–97.
Samiee, K. T.; Moran-Mirabal, J. M.; Cheung, Y. K.; Craighead, H. G. Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophys. J. 2006, 90, 3288–3299.
Levitus, M.; Ranjit, S. Cyanine dyes in biophysical research: The photophysics of polymethine fluorescent dyes in biomolecular environments. Q. Rev. Biophys. 2011, 44, 123–151.
Chandradoss, S. D.; Haagsma, A. C.; Lee, Y. K.; Hwang, J. H.; Nam, J. M.; Joo, C. Surface passivation for single-molecule protein studies. J. Vis. Exp. 2014, 50549.
Boukobza, E.; Sonnenfeld, A.; Haran, G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 2001, 105, 12165–12170.
Mets, Ü.; Rigler, R. Submillisecond detection of single rhodamine molecules in water. J. Fluoresc. 1994, 4, 259–264.
Wayment, J. R.; Harris, J. M. Biotin-avidin binding kinetics measured by single-molecule imaging. Anal. Chem. 2009, 81, 336–342.
Joo, C.; McKinney, S. A.; Lilley, D. M. J.; Ha, T. Exploring rare conformational species and ionic effects in DNA Holliday junctions using single-molecule spectroscopy. J. Mol. Biol. 2004, 341, 739–751.
Evans, G. W.; Hohlbein, J.; Craggs, T.; Aigrain, L.; Kapanidis, A. N. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms. Nucleic Acids Res. 2015, 43, 5998–6008.
Rasnik, I.; McKinney, S. A.; Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 2006, 3, 891–893.
Farooq, S.; Hohlbein, J. Camera-based single-molecule FRET detection with improved time resolution. Phys. Chem. Chem. Phys. 2015, 17, 27862–27872.
Kapanidis, A. N.; Lee, N. K.; Laurence, T. A.; Doose, S.; Margeat, E.; Weiss, S. Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 8936–8941.
Laine, R. F.; Tosheva, K. L.; Gustafsson, N.; Gray, R. D. M.; Almada, P.; Albrecht, D.; Risa, G. T.; Hurtig, F.; Lindås, A. C.; Baum, B. et al. NanoJ: A high-performance open-source super-resolution microscopy toolbox. J. Phys. D:Appl. Phys. 2019, 52, 163001.
Ryu, J. K.; Rah, S. H.; Janissen, R.; Kerssemakers, J. W. J.; Bonato, A.; Michieletto, D.; Dekker, C. Condensin extrudes DNA loops in steps up to hundreds of base pairs that are generated by ATP binding events. Nucleic Acids Res. 2022, 50, 820–832.
Barnes, C. O.; Calero, M.; Malik, I.; Graham, B. W.; Spahr, H.; Lin, G. W.; Cohen, A. E.; Brown, I. S.; Zhang, Q. M.; Pullara, F. et al. Crystal structure of a transcribing RNA polymerase II complex reveals a complete transcription bubble. Mol. Cell 2015, 59, 258–269.
Lerner, E.; Chung, S.; Allen, B. L.; Wang, S.; Lee, J.; Lu, S. W.; Grimaud, L. W.; Ingargiola, A.; Michalet, X.; Alhadid, Y. et al. Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. USA 2016, 113, E6562–E6571.
Dulin, D.; Bauer, D. L. V.; Malinen, A. M.; Bakermans, J. J. W.; Kaller, M.; Morichaud, Z.; Petushkov, I.; Depken, M.; Brodolin, K.; Kulbachinskiy, A. et al. Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria. Nat. Commun. 2018, 9, 1478.
Mazumder, A.; Kapanidis, A. N. Recent advances in understanding σ70-dependent transcription initiation mechanisms. J. Mol. Biol. 2019, 431, 3947–3959.
Landick, R. Transcriptional pausing as a mediator of bacterial gene regulation. Annu. Rev. Microbiol. 2021, 75, 291–314.
Janissen, R.; Eslami-Mossallam, B.; Artsimovitch, I.; Depken, M.; Dekker, N. H. A unifying mechanistic model of bacterial transcription with three interconnected pause states and non-diffusive backtrack recovery. Biophys. J. 2020, 118, 543a.
Jamiolkowski, R. M.; Chen, C. L.; Cooperman, B. S.; Goldman, Y. E. tRNA fluctuations observed on stalled ribosomes are suppressed during ongoing protein synthesis. Biophys. J. 2017, 113, 2326–2335.
Morse, J. C.; Girodat, D.; Burnett, B. J.; Holm, M.; Altman, R. B.; Sanbonmatsu, K. Y.; Wieden, H. J.; Blanchard, S. C. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Proc. Natl. Acad. Sci. USA 2020, 117, 3610–3620.
Lapointe, C. P.; Grosely, R.; Johnson, A. G.; Wang, J. F.; Fernández, I. S.; Puglisi, J. D. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc. Natl. Acad. Sci. USA 2021, 118, e2017715118.
Aunins, T. R.; Marsh, K. A.; Subramanya, G.; Uprichard, S. L.; Perelson, A. S.; Chatterjee, A. Intracellular hepatitis C virus modeling predicts infection dynamics and viral protein mechanisms. J. Virol. 2018, 92, e02098–17.
Yu, J.; Xiao, J.; Ren, X. J.; Lao, K. Q.; Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 2006, 311, 1600–1603.
Biebl, M. M.; Buchner, J. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb. Perspect. Biol. 2019, 11, a034017.
Taipale, M.; Jarosz, D. F.; Lindquist, S. HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 515–528.
Whitesell, L.; Lindquist, S. L. Hsp90 and the chaperoning of cancer. Nat. Rev. Cancer 2005, 5, 761–772.
Blagg, B. S. J.; Kerr, T. D. Hsp90 inhibitors: Small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med. Res. Rev. 2006, 26, 310–338.
Burlison, J. A.; Neckers, L.; Smith, A. B.; Maxwell, A.; Blagg, B. S. J. Novobiocin: Redesigning a DNA gyrase inhibitor for selective inhibition of Hsp90. J. Am. Chem. Soc. 2006, 128, 15529–15536.
Joshi, S.; Wang, T.; Araujo, T. L. S.; Sharma, S.; Brodsky, J. L.; Chiosis, G. Adapting to stress—chaperome networks in cancer. Nat. Rev. Cancer 2018, 18, 562–575.
Mishra, S. J.; Liu, W. Y.; Beebe, K.; Banerjee, M.; Kent, C. N.; Munthali, V.; Koren III, J.; Taylor III, J. A.; Neckers, L. M.; Holzbeierlein, J. et al. The development of Hsp90β-selective inhibitors to overcome detriments associated with pan-Hsp90 inhibition. J. Med. Chem. 2021, 64, 1545–1557.
Pearl, L. H. Review: The HSP90 molecular chaperone—An enigmatic ATPase. Biopolymers 2016, 105, 594–607.
Wang, R. Y. R.; Noddings, C. M.; Kirschke, E.; Myasnikov, A. G.; Johnson, J. L.; Agard, D. A. Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Nature 2022, 601, 460–464.
Noddings, C. M.; Wang, R. Y. R.; Johnson, J. L.; Agard, D. A. Structure of Hsp90-p23-GR reveals the Hsp90 client-remodelling mechanism. Nature 2022, 601, 465–469.
Bhattacharya, K.; Weidenauer, L.; Luengo, T. M.; Pieters, E. C.; Echeverría, P. C.; Bernasconi, L.; Wider, D.; Sadian, Y.; Koopman, M. B.; Villemin, M. et al. The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nat. Commun. 2020, 11, 5975.
Luengo, T. M.; Kityk, R.; Mayer, M. P.; Rüdiger, S. G. D. Hsp90 breaks the deadlock of the Hsp70 chaperone system. Mol. Cell 2018, 70, 545–552.
Mickler, M.; Hessling, M.; Ratzke, C.; Buchner, J.; Hugel, T. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 2009, 16, 281–286.
Uhlmann, F. SMC complexes: From DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 2016, 17, 399–412.
Rowley, M. J.; Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 2018, 19, 789–800.
Ganji, M.; Shaltiel, I. A.; Bisht, S.; Kim, E.; Kalichava, A.; Haering, C. H.; Dekker, C. Real-time imaging of DNA loop extrusion by condensin. Science 2018, 360, 102–105.
Kim, E.; Kerssemakers, J.; Shaltiel, I. A.; Haering, C. H.; Dekker, C. DNA-loop extruding condensin complexes can traverse one another. Nature 2020, 579, 438–442.
Higashi, T. L.; Pobegalov, G.; Tang, M. Z.; Molodtsov, M. I.; Uhlmann, F. A brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife 2021, 10, e67530.
Rundlet, E. J.; Holm, M.; Schacherl, M.; Natchiar, S. K.; Altman, R. B.; Spahn, C. M. T.; Myasnikov, A. G.; Blanchard, S. C. Structural basis of early translocation events on the ribosome. Nature 2021, 595, 741–745.
1059
Views
59
Downloads
15
Crossref
10
Web of Science
12
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.