Journal Home > Volume 15 , Issue 9

Linear relations between the adsorption free energies of nitrogen reduction reaction (NRR) intermediates limit the catalytic activity of single atom catalysts (SACs) to reach the optimal region. Significant improvements in NRR activity require the balance of binding strength of reaction intermediates. Herein, we have investigated the C3N-supported monometallic (M/C3N) and bimetallic (M1M2/C3N) atoms for the electrochemical NRR by using density functional theory (DFT) calculations. The results show that this linear relation does exist for SACs because all the intermediates bind to the same site on M/C3N. But the synergistic effect of the two atoms in M1M2/C3N can create a more flexible adsorption site for intermediates, which results in the decoupling of adsorption free energies of key intermediates. Subsequently, the fundamental limitation of scaling relations on limiting potentials is broken through. Most notably, the optimal limiting potential is increased from −0.63 V for M/C3N to −0.20 V for M1M2/C3N. In addition, the presence of bimetallic atoms can also effectively inhibit the hydrogen evolution reaction (HER) as well as improve the stability of the catalysts. This study proposes that the introduction of bimetallic atoms into C3N is beneficial to break the linear relations and develop efficient NRR electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational design of bimetallic atoms supported on C3N monolayer to break the linear relations for efficient electrochemical nitrogen reduction

Show Author's information Riming Hu1( )Yanan Yu2Yongcheng Li3Yiran Wang4Jiaxiang Shang4( )Yong Nie1Xuchuan Jiang1( )
Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, China
Shandong college of Tourism and Hospitality, Jinan 250200, China
Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering Research Center of High-Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, China
School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Linear relations between the adsorption free energies of nitrogen reduction reaction (NRR) intermediates limit the catalytic activity of single atom catalysts (SACs) to reach the optimal region. Significant improvements in NRR activity require the balance of binding strength of reaction intermediates. Herein, we have investigated the C3N-supported monometallic (M/C3N) and bimetallic (M1M2/C3N) atoms for the electrochemical NRR by using density functional theory (DFT) calculations. The results show that this linear relation does exist for SACs because all the intermediates bind to the same site on M/C3N. But the synergistic effect of the two atoms in M1M2/C3N can create a more flexible adsorption site for intermediates, which results in the decoupling of adsorption free energies of key intermediates. Subsequently, the fundamental limitation of scaling relations on limiting potentials is broken through. Most notably, the optimal limiting potential is increased from −0.63 V for M/C3N to −0.20 V for M1M2/C3N. In addition, the presence of bimetallic atoms can also effectively inhibit the hydrogen evolution reaction (HER) as well as improve the stability of the catalysts. This study proposes that the introduction of bimetallic atoms into C3N is beneficial to break the linear relations and develop efficient NRR electrocatalysts.

Keywords: density functional theory, nitrogen reduction reaction, linear relations, bimetallic atoms, C3N

References(54)

1

Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

2

Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.

3

Yang, B.; Ding, W. L.; Zhang, H. H.; Zhang, S. J. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687.

4

Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. , Int. Ed. 2017, 56, 2699–2703.

5

Suryanto, B. H. R.; Kang, C. S. M.; Wang, D. B.; Xiao, C. L.; Zhou, F. L.; Azofra, L. M.; Cavallo, L.; Zhang, X. Y.; MacFarlane, D. R. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. 2018, 3, 1219–1224.

6

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

7

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

8

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

9

Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

10

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

11

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S. J.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

12

Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

13

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. , Int. Ed. 2021, 60, 13388–13393.

14

Zhang, J.; Huang, Q. A.; Wang, J.; Wang, J.; Zhang, J. J.; Zhao, Y. F. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.

15

Chen, Z. W.; Chen, L. X.; Yang, C. C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities, and challenges. J. Mater. Chem. A 2019, 7, 3492–3515.

16

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

17

Ma, D. W.; Zeng, Z. P.; Liu, L. L.; Huang, X. W.; Jia, Y. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers. J. Phys. Chem. C 2019, 123, 19066–19076.

18

Wang, Z. X.; Yu, Z. G.; Zhao, J. X. Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 12835–12844.

19

Tang, S. B.; Liu, T. Y.; Dang, Q.; Zhou, X. H.; Li, X. K.; Yang, T. T.; Luo, Y.; Sharman, E.; Jiang, J. Synergistic effect of surface-terminated oxygen vacancy and single-atom catalysts on defective MXenes for efficient nitrogen fixation. J. Phys. Chem. Lett. 2020, 11, 5051–5058.

20

Zhao, J.; Zhao, J. X.; Cai, Q. H. Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 9248–9255.

21

Cai, L. J.; Zhang, N.; Qiu, B. C.; Chai, Y. Computational design of transition metal single-atom electrocatalysts on PtS2 for efficient nitrogen reduction. ACS Appl. Mater. Interfaces 2020, 12, 20448–20455.

22

Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

23

Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.

24

Hu, R. M.; Li, Y. C.; Zeng, Q. W.; Wang, F. H.; Shang, J. X. Bimetallic pairs supported on graphene as efficient electrocatalysts for nitrogen fixation: Search for the optimal coordination atoms. ChemSusChem 2020, 13, 3636–3644.

25

Chen, Z. W.; Yan, J. M.; Jiang, Q. Single or double: Which is the altar of atomic catalysts for nitrogen reduction reaction. Small Methods 2019, 3, 1800291.

26

Ouyang, Y. X.; Shi, L.; Bai, X. W.; Li, Q.; Wang, J. L. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 2020, 11, 1807–1813.

27

Fan, M. M.; Cui, J. W.; Wu, J. J.; Vajtai, R.; Sun, D. P.; Ajayan, P. M. Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small 2020, 16, 1906782.

28

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

29

Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.

30

He, B. L.; Shen, J. S.; Ma, D. W.; Lu, Z. S.; Yang, Z. X. Boron-doped C3N monolayer as a promising metal-free oxygen reduction reaction catalyst: A theoretical insight. J. Phys. Chem. C 2018, 122, 20312–20322.

31

Yang, S. W.; Li, W.; Ye, C. C.; Wang, G.; Tian, H.; Zhu, C.; He, P.; Ding, G. Q.; Xie, X. M.; Liu, Y. et al. C3N-a 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv. Mater. 2017, 29, 1605625.

32

Zhao, Y. M.; Ma, D. W.; Zhang, J.; Lu, Z. S.; Wang, Y. X. Transition metal embedded C3N monolayers as promising catalysts for the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 2019, 21, 20432–20441.

33

Li, X. F.; Yin, Y. Y.; Chang, X.; Xiong, Y.; Zhu, L.; Xing, W.; Xue, Q. Z. Doping-induced enhancement of CO2 adsorption on negatively charged C3N nanosheet: Insights from DFT calculations. Chem. Eng. J. 2020, 387, 123403.

34

Bhauriyal, P.; Mahata, A.; Pathak, B. Graphene-like carbon-nitride monolayer: A potential anode material for Na- and K-ion batteries. J. Phys. Chem. C 2018, 122, 2481–2489.

35

Hu, R. M.; Shang, J. X. Quantum capacitance of transition metal and nitrogen co-doped graphenes as supercapacitors electrodes: A DFT study. Appl. Surf. Sci. 2019, 496, 143659.

36

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

37

Lai, Q. X.; Zhu, J. J.; Zhao, Y. X.; Liang, Y. Y.; He, J. P.; Chen, J. H. MOF-based metal-doping-induced synthesis of hierarchical porous Cu-N/C oxygen reduction electrocatalysts for Zn-air batteries. Small 2017, 13, 1700740.

38

Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. , Int. Ed. 2015, 54, 14031–14035.

39

Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

40

Zhang, X.; Chen, A.; Zhang, Z. H.; Zhou, Z. Double-atom catalysts: Transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J. Mater. Chem. A 2018, 6, 18599–18604.

41

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. , Int. Ed. 2019, 58, 2321–2325.

42

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

43

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

44

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

45

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

46

Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746–1747.

47

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

48

Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.

49

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

50

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

51

Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419–3425.

52

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

53

Li, X. F.; Li, Q. K.; Cheng, J.; Liu, L. L.; Yan, Q.; Wu, Y. C.; Zhang, X. H.; Wang, Z. Y.; Qiu, Q.; Luo, Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706–8709.

54

Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643.

File
12274_2022_4412_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright

Publication history

Received: 26 July 2021
Revised: 17 March 2022
Accepted: 08 April 2022
Published: 31 May 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022
Return