Journal Home > Volume 15 , Issue 10

Compared to natural woods, synthetic woods have superior mechanical stability, thermal insulation, and flame retardancy owing to their hierarchically cellular microstructures and intrinsic advantages of the thermosetting matrix. Increasing the long-time fire resistance is very important to the practical application. In this study, we present a novel coating strategy by a vacuum-assisted sonication technique (sonocoating) with a rectorite nanosheet dispersion to create a uniform nanocoating on the channel walls of synthetic wood. Owing to ultrasonic energy and vacuum pressure, the nanosheet dispersion can penetrate deep down to form a layered nanocoating on the channel surface. The coated synthetic woods can withstand fire (400–600 °C) for more than 10 min with 62% mass retainment, surpassing uncoated synthetic woods and natural woods. Therefore, as a lightweight and strong composite with enhanced flame-retardant performance, the coated synthetic woods have huge potential applications in safe and energy-efficient buildings.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanosheet-coated synthetic wood with enhanced flame-retardancy by vacuum-assisted sonocoating technique

Show Author's information Zhi-Yuan Ma1,§Xiao-Feng Pan1,§Ze-Lai Xu2Zhi-Long Yu1Bing Qin1Yi-Chen Yin1Yu-Cheng Gao1Shu-Hong Yu1( )
Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

§ Zhi-Yuan Ma and Xiao-Feng Pan contributed equally to this work.

Abstract

Compared to natural woods, synthetic woods have superior mechanical stability, thermal insulation, and flame retardancy owing to their hierarchically cellular microstructures and intrinsic advantages of the thermosetting matrix. Increasing the long-time fire resistance is very important to the practical application. In this study, we present a novel coating strategy by a vacuum-assisted sonication technique (sonocoating) with a rectorite nanosheet dispersion to create a uniform nanocoating on the channel walls of synthetic wood. Owing to ultrasonic energy and vacuum pressure, the nanosheet dispersion can penetrate deep down to form a layered nanocoating on the channel surface. The coated synthetic woods can withstand fire (400–600 °C) for more than 10 min with 62% mass retainment, surpassing uncoated synthetic woods and natural woods. Therefore, as a lightweight and strong composite with enhanced flame-retardant performance, the coated synthetic woods have huge potential applications in safe and energy-efficient buildings.

Keywords: vacuum infiltration, flame-retardant, synthetic wood, sonocoating, rectorite nanosheets

References(42)

1

Chen, C. J.; Kuang, Y. D.; Zhu, S. Z.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S. J.; Hu, L. B. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666.

2

Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. Roy. Soc. Interface 2012, 9, 2749–2766.

3

Berglund, L. A.; Burgert, I. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 2018, 30, 1704285.

4

Yu, Z. L.; Yang, N.; Zhou, L. C.; Ma, Z. Y.; Zhu, Y. B.; Lu, Y. Y.; Qin, B.; Xing, W. Y.; Ma, T.; Li, S. C. et al. Bioinspired polymeric woods. Sci. Adv. 2018, 4, eaat7223.

5

Yu, Z. L.; Qin, B.; Ma, Z. Y.; Gao, Y. C.; Guan, Q. F.; Yang, H. B.; Yu, S. H. Emerging bioinspired artificial woods. Adv. Mater. 2021, 33, 2001086.

6

Lowden, L. A.; Hull, T. R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2013, 2, 4.

7

Dorez, G.; Ferry, L.; Sonnier, R.; Taguet, A.; Lopez-Cuesta, J. M. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis 2014, 107, 323–331.

8

Li, Y. C.; Schulz, J.; Mannen, S.; Delhom, C.; Condon, B.; Chang, S.; Zammarano, M.; Grunlan, J. C. Flame retardant behavior of polyelectrolyte–clay thin film assemblies on cotton fabric. ACS Nano 2010, 4, 3325–3337.

9

Lazar, S. T.; Kolibaba, T. J.; Grunlan, J. C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275.

10

Renneckar, S.; Zhou, Y. Nanoscale coatings on wood: Polyelectrolyte adsorption and layer-by-layer assembled film formation. ACS Appl. Mater. Interfaces 2009, 1, 559–566.

11

Davesne, A. L.; Lazar, S.; Bellayer, S.; Qin, S.; Grunlan, J. C.; Bourbigot, S.; Jimenez, M. Hexagonal boron nitride platelet-based nanocoating for fire protection. ACS Appl. Nano Mater. 2019, 2, 5450–5459.

12

Fahami, A.; Lee, J.; Lazar, S.; Grunlan, J. C. Mica-based multilayer nanocoating as a highly effective flame retardant and smoke suppressant. ACS Appl. Mater. Interfaces 2020, 12, 19938–19943.

13

Qiu, X. Q.; Li, Z. W.; Li, X. H.; Zhang, Z. J. Flame retardant coatings prepared using layer by layer assembly: A review. Chem. Eng. J. 2018, 334, 108–122.

14

Fu, Q. L.; Medina, L.; Li, Y. Y.; Carosio, F.; Hajian, A.; Berglund, L. A. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl. Mater. Interfaces 2017, 9, 36154–36163.

15

Mahltig, B.; Swaboda, C.; Roessler, A.; Böttcher, H. Functionalising wood by nanosol application. J. Mater. Chem. 2008, 18, 3180–3192.

16

Kolibaba, T. J.; Brehm, J. T.; Grunlan, J. C. Renewable nanobrick wall coatings for fire protection of wood. Green Mater. 2020, 8, 131–138.

17

Merk, V.; Chanana, M.; Keplinger, T.; Gaan, S.; Burgert, I. Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano- and submicron level. Green Chem. 2015, 17, 1423–1428.

18

Wang, K. H.; Wang, S. H.; Meng, D.; Chen, D.; Mu, C. Z.; Li, H. F.; Sun, J.; Gu, X. Y.; Zhang, S. A facile preparation of environmentally-benign and flame-retardant coating on wood by comprising polysilicate and boric acid. Cellulose 2021, 28, 11551–11566.

19

Garskaite, E.; Karlsson, O.; Stankeviciute, Z.; Kareiva, A.; Jones, D.; Sandberg, D. Surface hardness and flammability of Na2SiO3 and nano-TiO2 reinforced wood composites. RSC Adv. 2019, 9, 27973–27986.

20

Kong, L. Z.; Guan, H.; Wang, X. Q. In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustainable Chem. Eng. 2018, 6, 3349–3357.

21

Zhang, L. C.; Yi, D. Q.; Hao, J. W.; Gao, M. One-step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy. Polym. Adv. Technol. 2021, 32, 1176–1186.

22

Mayo, S. C.; Chen, F.; Evans, R. Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. J. Struct. Biol. 2010, 171, 182–188.

23

Kolibaba, T. J.; Grunlan, J. C. Environmentally benign polyelectrolyte complex that renders wood flame retardant and mechanically strengthened. Macromol. Mater. Eng. 2019, 304, 1900179.

24

Zhang, F.; Qi, C. X.; Wang, S. J.; Liu, J. H.; Cao, H. A study on preparation of cordierite gradient pores porous ceramics from rectorite. Solid State Sci. 2011, 13, 929–933.

25

Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283.

26

Oke, A. S.; Animasaun, I. L.; Mutuku, W. N.; Kimathi, M.; Shah, N. A.; Saleem, S. Significance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surface. Chin. J. Phys. 2021, 71, 716–727.

27

Prozorov, T.; Prozorov, R.; Suslick, K. S. High velocity interparticle collisions driven by ultrasound. J. Am. Chem. Soc. 2004, 126, 13890–13891.

28

Kotal, M.; Bhowmick, A. K. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci. 2015, 51, 127–187.

29

Lee, C. Y.; Wang, W. T.; Liu, C. C.; Fu, L. M. Passive mixers in microfluidic systems: A review. Chem. Eng. J. 2016, 288, 146–160.

30

Rabaud, D.; Thibault, P.; Raven, J. P.; Hugon, O.; Lacot, E.; Marmottant, P. Manipulation of confined bubbles in a thin microchannel: Drag and acoustic Bjerknes forces. Phys. Fluids 2011, 23, 042003.

31

Falcucci, G.; Amati, G.; Fanelli, P.; Krastev, V. K.; Polverino, G.; Porfiri, M.; Succi, S. Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. Nature 2021, 595, 537–541.

32

Richter, F.; Kotsovinos, P.; Rackauskaite, E.; Rein, G. Thermal response of timber slabs exposed to travelling fires and traditional design fires. Fire Technol. 2021, 57, 393–414.

33

Ding, F. C.; Liu, J. J.; Zeng, S. S.; Xia, Y.; Wells, K. M.; Nieh, M. P.; Sun, L. Y. Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci. Adv. 2017, 3, e1701212.

34

Richter, F.; Jervis, F. X.; Huang, X. Y.; Rein, G. Effect of oxygen on the burning rate of wood. Combust. Flame 2021, 234, 111591.

35

Xiao, Z. F.; Liu, S. L.; Zhang, Z. J.; Mai, C.; Xie, Y. J.; Wang, Q. W. Fire retardancy of an aqueous, intumescent, and translucent wood varnish based on guanylurea phosphate and melamine-urea-formaldehyde resin. Prog. Org. Coat. 2018, 121, 64–72.

36

Wang, T. S.; Liu, T.; Ma, T. T.; Li, L. P.; Wang, Q. W.; Guo, C. G. Study on degradation of phosphorus and nitrogen composite UV-cured flame retardant coating on wood surface. Prog. Org. Coat. 2018, 124, 240–248.

37

Shen, P.; Zhao, H. B.; Huang, W.; Chen, H. B. Poly(vinyl alcohol)/clay aerogel composites with enhanced flame retardancy. RSC Adv. 2016, 6, 109809–109814.

38

Shang, K.; Liao, W.; Wang, J.; Wang, Y. T.; Wang, Y. Z.; Schiraldi, D. A. Nonflammable alginate nanocomposite aerogels prepared by a simple freeze-drying and post-cross-linking method. ACS Appl. Mater. Interfaces 2016, 8, 643–650.

39

Chen, G. G.; Chen, C. J.; Pei, Y.; He, S. M.; Liu, Y.; Jiang, B.; Jiao, M. L.; Gan, W. T.; Liu, D. P.; Yang, B. et al. A strong, flame-retardant, and thermally insulating wood laminate. Chem. Eng. J. 2020, 383, 123109.

40

Gan, W. T.; Chen, C. J.; Wang, Z. Y.; Pei, Y.; Ping, W. W.; Xiao, S. L.; Dai, J. Q.; Yao, Y. G.; He, S. M.; Zhao, B. H. et al. Fire-resistant structural material enabled by an anisotropic thermally conductive hexagonal boron nitride coating. Adv. Funct. Mater. 2020, 30, 1909196.

41

Liang, C. W.; Yang, B.; Wang, D.; Chen, J.; Huang, Y. H.; Chen, Z. G.; Miao, J. B.; Qian, J. S.; Xia, R.; Tu, Y. L. et al. Investigation of the properties of polystyrene-based wood plastic composites: Effects of the flame retardant loading and magnetic fields. J. Polym. Eng. 2019, 39, 704–715.

42

Sun, J. M.; Wu, Z. W.; An, B.; Ma, C. H.; Xu, L. F.; Zhang, Z. S.; Luo, S.; Li, W.; Liu, S. X. Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose. Compos. Part B. Eng. 2021, 220, 108997.

File
12274_2022_4407_MOESM1_ESM.pdf (651.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 March 2022
Revised: 05 April 2022
Accepted: 06 April 2022
Published: 26 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51732011, U1932213, and 22005290), the National Basic Research Program of China (No. 2021YFA0715700), the National Key Research and Development Program of China (No. 2018YFE0202201), Science and Technology Major Project of Anhui Province (No. 201903a05020003), the University Synergy Innovation Program of Anhui Province (No. GXXT-2019-028), and the Hefei Municipal Natural Science Foundation (No. 2021024). Z. Y. M. acknowledges the funding support by China Postdoctoral Science Foundation (No. 2021TQ0317) and the Fundamental Research Funds for the Central Universities (No. WK2060000049). We would like to thank Prof. Dr. Yi Jin at Experimental Center of Engineering and Material Sciences, USTC for his assistance with thermophysical property analysis.

Return